Introduction to Cryptology

Lecture 19

Announcements

- HW6 due today
- HW7 due Thursday 4/20
- Remember to sign up for Extra Credit

Agenda

- Last time
- More details on AES/DES (K/L 6.2)
- Practical Constructions of CRHF (K/L 6.3)
- This time
- Number Theory Background (K/L Chapter 8)

Modular Arithmetic

Definition of modulo:
We say that two integers a, b are congruent modulo p denoted by

$$
a \equiv b \bmod p
$$

If

$$
p \mid(a-b)
$$

(i.e. p divides $(a-b)$).

Modular Arithmetic

Examples: All of the following are true

$$
\begin{gathered}
2 \equiv 15 \bmod 13 \\
28 \equiv 15 \bmod 13 \\
41 \equiv 15 \bmod 13
\end{gathered}
$$

$$
-11 \equiv 15 \bmod 13
$$

Modular Arithmetic

Operation: addition $\bmod p$
Regular addition, take modulo p .

Example: $8+10 \bmod 13 \equiv 18 \bmod 13 \equiv$
$5 \bmod 13$.

Properties of Addition mod p

Consider the set Z_{p} of integers $\{0,1, \ldots, p-1\}$ and the operation addition mod p .

- Closure: Adding two numbers in Z_{p} and taking $\bmod \mathrm{p}$ yields a number in Z_{p}.
- Identitiy: For every $a \in Z_{p},[0+a] \bmod p \equiv a \bmod p$.
- Inverse: For every $a \in Z_{p}$, there exists a $b \in Z_{p}$ such that $a+b \equiv 0 \bmod p$.
- b is simply the negation of $a(b=-a)$.
- Note that using the property of inverse, we can do subtraction. We define $c-d \bmod p$ to be equivalent to $c+(-d) \bmod p$.
- Associativity: For every $a, b, c \in Z_{p}$: $(a+b)+c=a+(b+c) \bmod p$.
Z_{p} is a group with respect to addition!

Definition of a Group

A group is a set G along with a binary operation ofor which the following conditions hold:

- Closure: For all $g, h \in G, g \circ h \in G$.
- Identity: There exists an identity $e \in G$ such that for all $g \in G, e \circ g=g=g \circ e$.
- Inverse: For all $g \in G$ there exists an element $h \in G$ such that $g \circ h=e=h \circ g$. Such an h is called an inverse of g.
- Associativity: For all $g_{1}, g_{2}, g_{3} \in G,\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ$ $\left(g_{2} \circ g_{3}\right)$.

When G has a finite number of elements, we say G is finite and let $|G|$ denote the order of the group.

Abelian Group

A group G with operation \circ is abelian if the following holds:

- Commutativity: For all $g, h \in G, g \circ h=h \circ g$.

We will always deal with finite, abelian groups.

Other groups over the integers

- We will be interested mainly in multiplicative groups over the integers, since there are computational problems believed to be hard over such groups.
- Such hard problems are the basis of numbertheoretic cryptography.
- Group operation is multiplication mod p, instead of addition mod p.

Multiplication $\bmod p$

Example:

$$
3 \cdot 8 \bmod 13 \equiv 24 \bmod 13 \equiv 11 \bmod 13
$$

Multiplicative Groups

Is Z_{p} a group with respect to multiplication \bmod p ?

- Closure-YES
- Identity-YES (1 instead of 0)
- Associativity-YES
- Inverse-NO
-0 has no inverse since there is no integer a such that $0 \cdot a \equiv 1 \bmod p$.

Multiplicative Group

For p prime, define $Z^{*}{ }_{p}=\{1, \ldots, p-1\}$ with operation multiplication $\bmod p$.

We will see that $Z^{*}{ }_{p}$ is indeed a multiplicative group!
To prove that $Z^{*}{ }_{p}$ is a multiplicative group, it is sufficient to prove that every element has a multiplicative inverse (since we have already argued that all other properties of a group are satisfied).
This is highly non-trivial, we will see how to prove it using the Euclidean Algorithm.

Inefficient method of finding inverses

$\bmod p$

Example: Multiplicative inverse of $9 \bmod 11$.

$$
\begin{gathered}
9 \cdot 1 \equiv 9 \bmod 11 \\
9 \cdot 2 \equiv 18 \equiv 7 \bmod 11 \\
9 \cdot 3 \equiv 27 \equiv 5 \bmod 11 \\
9 \cdot 4 \equiv 36 \equiv 3 \bmod 11 \\
9 \cdot 5 \equiv 45 \equiv 1 \bmod 11
\end{gathered}
$$

What is the time complexity?
Brute force search. In the worst case must try all 10 numbers in $Z^{*}{ }_{11}$ to find the inverse.

This is exponential time! Why? Inputs to the algorithm are $(9,11)$. The length of the input is the length of the binary representation of $(9,11)$. This means that input size is approx. $\log _{2} 11$ while the runtime is approx. $2^{\log _{2} 11}=11$. The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.

Euclidean Algorithm

Theorem: Let a, p be positive integers. Then there exist integers X, Y such that $X a+Y b=\operatorname{gcd}(a, p)$.

Given a, p, the Euclidean algorithm can be used to compute $\operatorname{gcd}(a, p)$ in polynomial time. The extended Euclidean algorithm can be used to compute X, Y in polynomial time.
We will see the extended Euclidean algorithm next class

Proving Z^{*} is a multiplicative group

In the following we prove that every element in $Z^{*}{ }_{p}$ has a multiplicative inverse when p is prime. This is sufficient to prove that $Z^{*}{ }_{p}$ is a multiplicative group.

Proof. Let $a \in Z^{*}{ }_{p}$. Then $\operatorname{gcd}(a, p)=1$, since p is prime.
By the Euclidean Algorithm, we can find integers X, Y such that $a X+p Y=\operatorname{gcd}(a, p)=1$.
Rearranging terms, we get that $p Y=(a X-1)$ and so $p \mid(a X-1)$. By definition of modulo, this implies that $a X \equiv 1 \bmod p$.
By definition of inverse, this implies that X is the multiplicative inverse of a.

Note: By above, the extended Euclidean algorithm gives us a way to compute the multiplicative inverse in polynomial time.

Extended Euclidean Algorithm Example \#1

Find: X, Y such that $9 X+23 Y=\operatorname{gcd}(9,23)=1$. $23=2 \cdot 9+5$
$9=1 \cdot 5+4$
$5=1 \cdot 4+1$
$4=4 \cdot 1+0$

$$
\begin{gathered}
1=5-1 \cdot 4 \\
1=5-1 \cdot(9-1 \cdot 5) \\
1=(23-2 \cdot 9)-(9-(23-2 \cdot 9)) \\
1=2 \cdot 23-5 \cdot 9
\end{gathered}
$$

$-5=18 \bmod 23$ is the multiplicative inverse of $9 \bmod 23$.

Extended Euclidean Algorithm Example \#2

Find: X, Y such that $5 X+33 Y=\operatorname{gcd}(5,33)=1$.

$$
\begin{gathered}
33=6 \cdot 5+3 \\
5=1 \cdot 3+2 \\
3=1 \cdot 2+1 \\
2=2 \cdot 1+0
\end{gathered}
$$

$$
\begin{gathered}
1=3-1 \cdot 2 \\
1=3-(5-3) \\
1=(33-6 \cdot 5)-(5-(33-6 \cdot 5)) \\
1=2 \cdot 33-13 \cdot 5
\end{gathered}
$$

$-13=20 \bmod 33$ is the multiplicative inverse of $5 \bmod 33$.

Time Complexity of Euclidean Algorithm

When finding $\operatorname{gcd}(a, b)$, the " b " value gets halved every two rounds.
Why?

Time complexity: $2 \log (b)$.
This is polynomial in the length of the input.
Why?

Getting Back to Z^{*}

p
Group $Z^{*}{ }_{p}=\{1, \ldots, p-1\}$ operation: multiplication modulo p.
Order of a finite group is the number of elements in the group.
Order of $Z^{*}{ }_{p}$ is $p-1$.

Fermat's Little Theorem

Theorem: For prime p, integer a :

$$
a^{p} \equiv a \bmod p
$$

Useful Fact

Fact: For prime p and integers a, b, If $p \mid a \cdot b$ and $p \nmid a$, then $p \mid b$.

Corollary of Fermat's Little Theorem

Corollary: For prime p and a such that $(a, p)=1$:

$$
a^{p-1} \equiv 1 \bmod p
$$

Proof:

- By Fermat's Little Theorem we have that $a^{p} \equiv a \bmod p$. By definition of modulo, this means that $p \mid\left(a^{p}-a\right)$. Rearranging, this implies that $p \mid a \cdot\left(a^{p}-1\right)$.
- Now, since $\operatorname{gcd}(a, p)=1$, we have that $p \nmid a$. Applying "useful fact" with $a=a$ and $b=\left(a^{p}-1\right)$, we have that $p \mid\left(a^{p}-1\right)$.
- Finally, by definition of modulo, we have that $a^{p-1} \equiv 1 \bmod p$.

Note: For prime $p, p-1$ is the order of the group $Z^{*}{ }_{p}$.

Generalized Theorem

Theorem: Let G be a finite group with $m=|G|$, the order of the group. Then for any element $g \in G, g^{m}=1$.

Corollary of Fermat's Little Theorem is a special case of the above when G is the multiplicative group $Z^{*}{ }_{p}$ and p is prime.

