Introduction to Cryptology

Lecture 13

Announcements

- Midterm Upcoming on 3/16
 - Review sheet and solutions will be posted soon
 - Cheat sheet will be included in exam
- Please pick up Homeworks during my office hours or TA's office hours!

Agenda

- Last time:
 - Domain extension for MACs (K/L 4.4)
 - CCA security (K/L 3.7)
 - Authenticated Encryption (K/L 4.5)
- This time:
 - Collision-Resistant Hash Functions (K/L 5.1)
 - Class Exercise
 - Domain Extension (Merkle-Damgard) (K/L 5.2)
 - Domain Extension (Sponge)

Collision Resistant Hashing

Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (*Gen*, *H*) satisfying the following:

- Gen takes as input a security parameter 1ⁿ and outputs a key s. We assume that 1ⁿ is implicit in s.
- *H* takes as input a key *s* and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ' . In this case, we also call H a compression function.

The collision-finding experiment

$Hashcoll_{A,\Pi}(n)$:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0,1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries Athere is a negligible function neg such that $\Pr[Hashcoll_{A,\Pi}(n) = 1] \leq neg(n).$

Weaker Notions of Security

- Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^{s}(x') = H^{s}(x)$.
- Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$.

Domain Extension

The Merkle-Damgard Transform

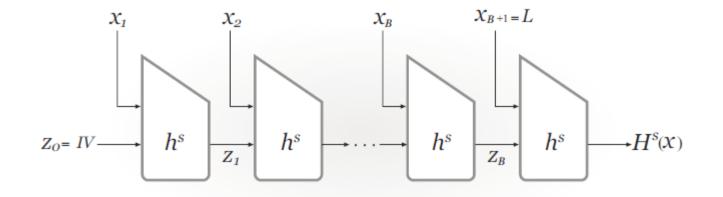


FIGURE 5.1: The Merkle-Damgård transform.

The Merkle-Damgard Transform

Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct hash function (Gen, H) as follows:

- *Gen*: remains unchanged
- *H*: on input a key *s* and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:
 - 1. Set $B \coloneqq \left\lceil \frac{L}{n} \right\rceil$ (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \ldots, x_B . Set $x_{B+1} \coloneqq L$, where L is encoded as an n-bit string.
 - 2. Set $z_0 \coloneqq 0^n$. (This is also called the IV.)
 - 3. For i = 1, ..., B + 1, compute $z_i \coloneqq h^s(z_{i-1} || x_i)$.
 - 4. Output z_{B+1} .

Security of Merkle-Damgard

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).

Message Authentication Using Hash Functions

Hash-and-Mac Construction

Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows:

- Gen': on input 1^n , choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' \coloneqq \langle k, s \rangle$.
- Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.
- Vrfy': on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.

Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.

Proof Intuition

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

- 1. $H^{s}(m^{*}) = H^{s}(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^{s} .
- 2. $H^{s}(m^{*}) \neq H^{s}(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π .