Introduction to Cryptology

Lecture 12

Announcements

- HW5 due today
- Midterm Upcoming on 3/16
 - Review sheet and solutions will be posted soon
 - Cheat sheet will be included in exam

Agenda

- Last time:
 - Constructing MAC from PRF (K/L 4.3)
- This time:
 - Domain extension for MACs (K/L 4.4)
 - CCA security (K/L 3.7)
 - Authenticated Encryption (K/L 4.5)

Domain Extension for MACs

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ . The basic CBC-MAC construction is as follows:

- *Mac*: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 - 1. Parse *m* as $m = m_1, ..., m_\ell$ where each m_i is of length *n*.

2. Set
$$t_0 \coloneqq 0^n$$
. Then, for $i = 1$ to ℓ :

Set $t_i \coloneqq F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

Vrfy: on input a key k ∈ {0,1}ⁿ, a message m, and a tag t, do: If m is not of length ℓ(n) · n then output 0. Otherwise, output 1 if and only if t = Mac_k(m).

CBC-MAC

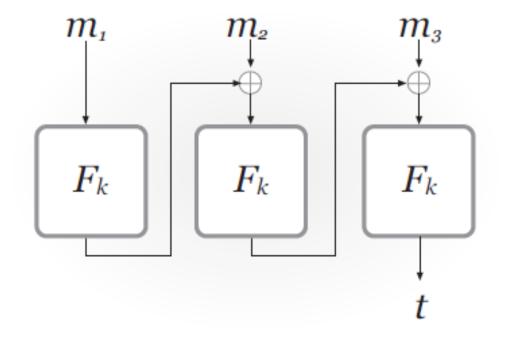


FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Chosen Ciphertext Security

CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

CCA Security

A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries A there exists a negligible function *negl* such that

$$\Pr\left[\operatorname{PrivK^{cca}}_{A,\Pi}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Authenticated Encryption

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$:

- 1. Run $Gen(1^n)$ to obtain key k.
- 2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.
- 3. Let $m \coloneqq Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.

Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible funcion neg such that:

$$\Pr[EncForge_{A,\Pi}(n)=1] \leq neg(n).$$

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCAsecure and unforgeable.

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$\begin{array}{ll} c \leftarrow Enc_{k_E}(m) & t \leftarrow Mac_{k_M}(m) \\ & \langle c, t \rangle \end{array}$$

Is this secure? NO!

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m)$$
 $c \leftarrow Enc_{k_E}(m||t)$

c is sent

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$$
$$\langle c, t \rangle$$

Is this secure? YES! As long as the MAC is strongly secure.