Introduction to Cryptology

Lecture 11

Announcements

- HW5 up on course webpage, due 3/7
- Instructor Office Hours this week:
 - Today, 3/2 from 3-4pm
 - Monday, 3/6 from 3:30-4:30pm

Agenda

- Last time:
 - Block Ciphers (K/L 3.5)
 - Modes of Operation (K/L 3.6)
 - Started MAC (K/L 4.2)
- This time:
 - Security Definition for MAC (K/L 4.2)
 - Constructing MAC from PRF
 - Class Exercise

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

- 1. The key-generation algorithm *Gen* takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$.
- 2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t. $t \leftarrow Mac_k(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit bwith b = 1 meaning valid and b = 0 meaning invalid. $b \coloneqq Vrfy_k(m, t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.

Security of MACs

The message authentication experiment $MACforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.

Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

 $\Pr[MACforge_{A,\Pi}(n) = 1] \le neg(n).$

Strong MACs

The strong message authentication experiment $MACsforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $(m,t) \notin Q$. In that case, the output of the experiment is defined to be 1.

Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy) \text{ is a strong MAC if for all}$ probabilistic polynomial-time adversaries A, there is a negligible function neg such that: $\Pr[MACsforge_{A,\Pi}(n) = 1] \leq neg(n).$

Constructing Secure Message Authentication Codes

A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- *Mac*: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t \coloneqq F_k(m)$.
- Vrfy: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D:

D gets oracle access to oracle O, which is either F_k , where F is pseudorandom or f which is truly random.

- 1. Instantiate $A^{Mac_k(\cdot)}(1^n)$.
- 2. When A queries its oracle with message m, output O(m).
- 3. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
- 4. If $m^* \in Q$, output 0.
- 5. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^* .
- 6. If $t^* = z^*$ output 1. Otherwise, output 0.

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k .

- When O is pseudorandom, D outputs 1 with probability $\Pr[MACforge_{A,\Pi}(n) = 1] = \rho(n)$, where ρ is non-negligible.
- When *O* is random, *D* outputs 1 with probability at most $\frac{1}{2^n}$. Why?

D's distinguishing probability is:

$$\left|\frac{1}{2^n} - \rho(n)\right| = \rho(n) - \frac{1}{2^n}$$

Since, $\frac{1}{2^n}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n) - \frac{1}{2^n}$ is non-negligible.

This is a contradiction to the security of the PRF.

Domain Extension for MACs