Lattice-Based Crypto

Lecture 27

Traditional Crypto Assumptions

- Factoring: Given $N=p q$, find p, q
- RSA Given $N=p q, e, x^{e} \bmod N$, find x.
- Discrete Log: Given $g^{x} \bmod p$, find x.
- Diffie-Hellman Assumptions $\left(g^{x}, g^{y}, g^{x y}\right)$, $\left(g^{x}, g^{y}, g^{z}\right)$

Are They Secure?

- Algorithmic Advances:
- Factoring: Best algorithm time $2^{\tilde{O}\left(n^{\frac{1}{3}}\right)}$ to factor n-bit number.
- Discrete log: Best algorithm $2^{\tilde{o}\left(n^{\frac{1}{3}}\right)}$ for groups Z_{p}^{*}, where p is n bits.
- [Adrian et al. 2015] With preprocessing could possibly be feasible for nation-states and $n=1024$.
- Quasipolynomial time algorithms for small characteristic fields. Not known to apply in practice.
- Quantum Computers:
- Shor's algorithm solves both factoring and discrete log in quantum polynomial time ($\tilde{O}\left(n^{2}\right)$).

Are They Secure?

"For those partners and vendors that have not yet made the transition to Suite B algorithms (ECC), we recommend not making a significant expenditure to do so at this point but instead to prepare for the upcoming quantum resistant algorithm transition.... Unfortunately, the growth of elliptic curve use has bumped up against the fact of continued progress in the research on quantum computing, necessitating a re-evaluation of our cryptographic strategy. "-NSA Statement, August 2015

Post-Quantum Approach

- New set of assumptions based on finding short vectors in lattices.
- Believed to be hard for quantum computers.
- Evidence of hardness "worst case to average case reduction".
- Versatile: Can essentially construct all cryptosystems out of these assumptions.

The LWE Problem (Search)

Secret n-dimension vector s
with entries chosen at random

Problem: Given, A, As+e, find s.

The LWE Problem Decision

Secret n-dimension vector s with entries chosen at random

Operations are mod p .

Public $m \times n$ matrix A , with entries chosen at random over Z_{p}

U
m uniform random elements from Z_{p}

The SIS Problem

Public $n \times m$ matrix A , with entries chosen at random over Z_{p}

Problem: Given A, find $z \in\{0,1\}^{m}$

Lattices

An n-dimensional lattice L is an additive discrete subgroup of R^{n}. A basis $\boldsymbol{B} \in R^{n \times n}$ defines a lattice $\mathrm{L}(\boldsymbol{B})$ in the following way:
$L(\boldsymbol{B})=\left\{\boldsymbol{v} \in R^{n}\right.$ s.t. $\boldsymbol{v}=\boldsymbol{B} \boldsymbol{z}$ for some $\left.\boldsymbol{z} \in Z^{n}\right\}$.
"integer linear combinations of the basis vectors"
i-th successive minima $\lambda_{i}(L(B))$: The smallest radius r such that there are i linearly independent vectors $\left\{v_{1}, \ldots, v_{i}\right\}$ of length at most r.

Hard Lattice Problems

- Are all parameterized by "approximation factor" $\gamma>1$.
- Shortest Vector Problem (SVP): Given a basis B, find a non-zero vector $\boldsymbol{v} \in L(\boldsymbol{B})$ whose length is at most $\gamma \cdot \lambda_{1}(L(B))$.
- Shortest Independent Vector Problem (SIVP): Given a basis B, find a linearly independent set $\left\{v_{1}, \ldots, v_{n}\right\}$ such that all vectors have length at most $\gamma \cdot \lambda_{n}(L(\boldsymbol{B}))$.
- Gap Shortest vector problem (GapSVP): Given a basis B, and a radius $r>0$
- Return YES if $\lambda_{1}(L(B)) \leq r$
- Return NO if $\lambda_{1}(L(B))>\gamma \cdot r$.

Relation to LWE, SIS

- Worst-Case to Average-Case Reduction: Breaking the cryptosystem on average is as hard as breaking the hardest instance of the underlying lattice problem.
- SIS:
- Worst-Case to Average-Case Reduction from SIVP.
- LWE:
- Worst-Case to Average-Case Quantum Reduction from SIVP.
- Worst-Case to Average-Case Classical Reductions from GapSVP.

Lattice-Based Encryption

Regev's Cryptosystem

Public
Key:

$\mathrm{u}=\mathrm{As}+\mathrm{e}$

Secret
Key:

Regev's Cryptosystem Encryption of $m \in\{0,1\}$

(2) \square $u=A s+e$
$+m \cdot\left\lfloor\frac{p}{2}\right\rfloor$

Regev's Cryptosystem
 Decryption

Regev's Cryptosystem
 Decryption

Regev's Cryptosystem

Decryption

Regev's Cryptosystem

Decryption

$$
\approx 0 \quad+m \cdot\left\lfloor\frac{p}{2}\right\rfloor
$$

Thank You!

