Lattice-Based Crypto

Lecture 27

Traditional Crypto Assumptions

- Factoring: Given N = pq, find p, q
 RSA Given N = pq, e, x^e mod N, find x.
- Discrete Log: Given g^x mod p, find x.
 Diffie-Hellman Assumptions (g^x, g^y, g^{xy}), (g^x, g^y, g^z)

Are They Secure?

- Algorithmic Advances:
 - Factoring: Best algorithm time $2^{\tilde{O}(n^{\frac{1}{3}})}$ to factor *n*-bit number.
 - Discrete log: Best algorithm $2^{\tilde{O}(n^{\frac{1}{3}})}$ for groups Z_p^* , where p is n bits.
 - [Adrian et al. 2015] With preprocessing could possibly be feasible for nation-states and n = 1024.
 - Quasipolynomial time algorithms for small characteristic fields. Not known to apply in practice.
- Quantum Computers:
 - Shor's algorithm solves both factoring and discrete log in quantum polynomial time $(\tilde{O}(n^2))$.

Are They Secure?

"For those partners and vendors that have not yet made the transition to Suite B algorithms (ECC), we recommend not making a significant expenditure to do so at this point but instead to **prepare for the upcoming quantum resistant algorithm transition**.... Unfortunately, the growth of elliptic curve use has bumped up against the fact of continued progress in the research on quantum computing, necessitating a re-evaluation of our cryptographic strategy. "—NSA Statement, August 2015

NIST Kicks Off Effort to Defend Encrypted Data from QuantumComputer ThreatApril 28, 2016Google Dabbles in Post-QuantumCryptography

By Richard Adhikari Jul 12, 2016 2:06 PM PT

🗟 Print 🖾 Email

Post-Quantum Approach

- New set of assumptions based on finding short vectors in lattices.
- Believed to be hard for quantum computers.
- Evidence of hardness "worst case to average case reduction".
- Versatile: Can essentially construct all cryptosystems out of these assumptions.

The LWE Problem (Search)

Secret *n*-dimension vector s with entries chosen at random

Problem: Given, A, As+e, find s.

The LWE Problem Decision

The SIS Problem

Public $n \times m$ matrix A, with entries chosen at random over Z_p

Problem: Given A, find $z \in \{0,1\}^m$

Lattices

An *n*-dimensional lattice L is an additive discrete subgroup of \mathbb{R}^n . A basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ defines a lattice L(\mathbf{B}) in the following way:

 $L(\mathbf{B}) = \{ \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \mathbf{v} = \mathbf{B}\mathbf{z} \text{ for some } \mathbf{z} \in \mathbb{Z}^n \}.$

"integer linear combinations of the basis vectors"

i-th successive minima $\lambda_i(L(B))$: The smallest radius r such that there are i linearly independent vectors $\{v_1, \dots, v_i\}$ of length at most r.

Hard Lattice Problems

- Are all parameterized by "approximation factor" $\gamma > 1$.
- Shortest Vector Problem (SVP): Given a basis B, find a non-zero vector $v \in L(B)$ whose length is at most $\gamma \cdot \lambda_1(L(B))$.
- Shortest Independent Vector Problem (SIVP): Given a basis B, find a linearly independent set $\{v_1, \dots, v_n\}$ such that all vectors have length at most $\gamma \cdot \lambda_n(L(B))$.
- Gap Shortest vector problem (GapSVP): Given a basis
 B, and a radius r > 0
 - Return YES if $\lambda_1(L(B)) \leq r$
 - Return NO if $\lambda_1(L(B)) > \gamma \cdot r$.

Relation to LWE, SIS

- Worst-Case to Average-Case Reduction: Breaking the cryptosystem on average is as hard as breaking the hardest instance of the underlying lattice problem.
- SIS:

Worst-Case to Average-Case Reduction from SIVP.

- LWE:
 - Worst-Case to Average-Case Quantum Reduction from SIVP.
 - Worst-Case to Average-Case Classical Reductions from GapSVP.

Lattice-Based Encryption

Key:

s

Encryption of $m \in \{0,1\}$

Decryption

Decryption

Decryption

Decryption

 ≈ 0

 $+ m \cdot \left\lfloor \frac{p}{2} \right\rfloor$

Thank You!