Introduction to Cryptology



Announcements

* HW2 due today
* HW3 up on course webpage, due 2/23

* No office hours today after class
— Instead OH tomorrow, Wed 2/17 from 2pm-3pm
— Regular Thursday hours



Agenda

* Last time:
— Class exercise on intractibility
* This time:
— The Computational Approach (Sec. 3.1)
— Defining computationally secure SKE (Sec. 3.2)
— Defining PRG (Sec. 3.3)

— Constructing computationally secure SKE (Sec. 3.3)
* i.e. a Stream Cipher



The Computational Approach

Two main relaxations:

1. Security is only guaranteed against efficient
adversaries that run for some feasible amount of

time.

2. Adversaries can potentially succeed with some
very small probability.



Security Parameter

Integer valued security parameter denoted by n
that parameterizes both the cryptographic
schemes as well as all involved parties.

When honest parties initialize a scheme, they
choose some value n for the security parameter.

Can think of security parameter as corresponding
to the length of the key.

Security parameter is assumed to be known to
any adversary attacking the scheme.

View run time of the adversary and its success
probability as functions of the security parameter.



Polynomial Time

e Efficient adversaries = Polynomial time
adversaries

— There is some polynomial p such that the
adversary runs for time at most p(n) when the
security parameter is n.

— Honest parties also run in polynomial time.

— The adversary may be much more powerful than
the honest parties.



Negligible

* Small probability of success = negligible
probability

— A function f is negligible if for every polynomial p
and all sufficiently large values of n it holds that

fn) < — p(n)

— Intuition, f(n) < n~¢ for every constant ¢, as n
goes to infinity.
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Practical Implications of
Computational Security

For key size n, any adversary running in time 2™/2

breaks the scheme with probability 1/2™/2.

Meanwhile, Gen, Enc, Dec each take time n?.

If n = 128 then:
— Gen, Enc, Dec take time 16,384
— Adversarial run time is 264 ~ 1018

If n = 256 then:

* (Gen, Enc,Dec quadruples--takes time 65,536
 Adversary run time is multiplied by 2%, Becomes 2128 ~ 1038



Defining Computationally Secure
Encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input security
parameter 1™ and outputs a key k denoted k « Gen(1").
We assume WLOG that |k| = n.

2. The encryption algorithm Enc takes as input a key k and a
message m € {0,1}*, and outputs a ciphertext ¢ denoted
c <« Enc,(m).

3. The decryption algorithm Dec takes as input a key k and
ciphertext ¢ and outputs a message m denoted by
m := Dec;(c).
Correctness: For every n, every key k « Gen(1™), and every
m € {0,1}*, it holds that Decy, Enck(m)) = m.



Indistinguishability in the presence of
an eavesdropper

Consider a private-key encryption scheme Il =

(Gen, Enc, Dec), any adversary A, and any value n for
the security parameter.

The eavesdropping indistinguishability experiment Priera”A,H (n):

1. The adversary A is given input 1", and outputs a pair of messages
mg, My of the same length.

2. Akey k is generated by running Gen(1™), and a random bit b < {0,1}
is chosen. A challenge ciphertext ¢ « Ency,(my) is computed and
given to A.

3. Adversary A outputs a bit b’.

4. The output of the experiment is definedtobe 1 if b’ = b, and 0
otherwise. If PrivK®®”  _(n) = 1, we say that A succeeded.



Indistinguishability in the presence of
an eavesdropper

Definition: A private key encryption scheme

[I = (Gen, Enc, Dec) has indistinguishable
encryptions in the presence of an eavesdropper if
for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

Pr [Per eav " (n) = 1] —+ negl(n),

Where the prob. Is taken over the random coins
used by A, as well as the random coins used in the
experiment.



Semantic Security

* The full definition of semantic security is even
more general.

* Consider arbitrary distributions over plaintext

messages and arbitrary external information
about the plaintext.



Semantic Security

Definition: A private key encryption scheme Il =
(Gen, Enc, Dec) is semantically secure in the presence of
an eavesdropper if for every ppt adversary A there exists a
ppt algorithm A" such that for all efficiently sampleable
distributions X = (X4, ...,) and all poly time computable
functions f, h, there exists a negligible function negl such
that

[PrlA(1", Enci(m), h(m)) = f(m)]

— Pr[4'(1", h(m)) = f(m)]| < negl(n),

where m is chosen according to distribution X,,, and the

probabilities are taken over choice of m and the key k, and any
random coins used by A4, A’, and the encryption process.



Equivalence of Definitions

Theorem: A private-key encryption scheme has
indistinguishable encryptions in the presence of
an eavesdropper if and only if it is semantically
secure in the presence of an eavesdropper.



Constructions



Pseudorandom Generator

Functionality
— Deterministic algorithm G
— Takes as input a short random seed s
— Ouputs a long string G(s)

Security
— No efficient algorithm can “distinguish” G (s) from a truly random
string 7.
— i.e. passes all “statistical tests.”
Intuition:
— Stretches a small amount of true randomness to a larger amount of
pseudorandomness.

Why is this useful?

— We will see that pseudorandom generators will allow us to beat the
Shannon bound of |K| = |M|.

— l.e. we will build a computationally secure encryption scheme with
K| < |M|



Pseudorandom Generators

Definition: Let () be a polynomial and let G be a
deterministic poly-time algorithm such that for any input

s € {0,1}", algorithm G outputs a string of length £(n). We
say that G is a pseudorandom generator if the following two
conditions hold:

1. (Expansion:) For every n it holds that £(n) > n.

2. (Pseudorandomness:) For all ppt distinguishers D, there
exists a negligible function negl such that:

[Pr[D(r) = 1] — Pr[D(G(s)) = 1]| < negl(),

where r is chosen uniformly at random from {0,1}(% the
seed s is chosen uniformly at random from {0,1}", and the
probabilities are taken over the random coins used by D and
the choice of r and s.

The function £(-) is called the expansion factor of G.



Stream Cipher

Practical instantiation of a pseudorandom
generator (will talk more about them and how
they are constructed later in the course).

Pseudorandom bits of a stream cipher are
produced gradually and on demand.

Application can request exact number of bits
heeded.

This improves efficiency.



Constructing Secure Encryption
Schemes



A Secure Fixed-Length Encryption
Scheme

O—w]

Pseudorandom
generator
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The Encryption Scheme

Let ¢ be a pseudorandom generator with expansion
factor £. Define a private-key encryption scheme for
messages of length € as follows:

* Gen:oninput 1™, choose k < {0,1}" uniformly at
random and output it as the key.
 Enc:on inPut a key k € {0,1}" and a message
m € {0,1}*™ output the ciphertext
c:=G(k) @ m.
 Dec:oninputakeyk € {0,1}" and a ciphertext
¢ € {0,1¥¥™ output the plaintext message

m:= G(k) P c.



