Introduction to Cryptology



Announcements

HW1 due today

HW?2 up on course webpage, due Tuesday
2/16
Readings/quizzes on Canvas due Friday 2/12

Looking ahead: next class we will do a longer
class exercise on intractability



Agenda

* Last time:
— Definition of info-theoretic security (Sec. 2.1)

— Equivalent def’s and proofs of equivalence (Sec.
2.1)

* This time:
— One time pad (OTP) (Sec. 2.2)
— Limitations of perfect secrecy (Sec. 2.3)
— Shannon’s Theorem (Sec. 2.4)
— Intro to computational security



The One-Time Pad (Vernam’s Cipher)

* [n 1917, Vernam patented a cipher now called
the one-time pad that obtains perfect secrecy.

* There was no proof of this fact at the time.

e 25 years later, Shannon introduced the notion
of perfect secrecy and demonstrated that the
one-time pad achieves this level of security.



The One-Time Pad Scheme

Fix an integer £ > 0. Then the message space M, key
space K, and ciphertext space C are all equal to

{0,1}*.

. The key-generation algorithm Gen works by choosing

a string from K = {0,1}* according to the uniform
distribution.

Encryption Enc works as follows: given a key
k € {0,1}*, and a message m € {0,1}*,output
c:=k & m.

Decryption Dec works as follows: given a key
k € {0,1}¢, and a ciphertext ¢ € {0,1}?, output
m: =k & c.



Security of OTP

Theorem: The one-time pad encryption scheme
is perfectly secure.



Proof

Proof: Fix some distribution over M and fix an
arbitrary m € M and ¢ € C. For one-time pad:

PriC=c|M=m]=PrIM@® K =c|M =m]

::pr[m@K:C]:Pr[K=m@C]:%

Since this holds for all distributions and all m, we
have that for every probability distribution over M,
every mg,m; € M andeveryc € C

1
PriC =c|M =m,] = ?=Pr[C=C|M=m1]



Drawbacks of OTP

e Key length is the same as the message length.

— For every bit communicated over a public channel,
a bit must be shared privately.

— We will see this is not just a problem with the OTP
scheme, but an inherent problem in perfectly
secret encryption schemes.

e Key can only be used once.

— You will see in the homework that this is also an
inherent problem.



Some Examples

Is the following scheme perfectly secret?

Message space M = {0,1,...,n — 1}. Key
space K = {0,1,..,n—1}.

Gen() chooses a key k at random from K.
Enc, (m) returnsm + k.
Dec,(c) returnsc — k.
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Limitations of Perfect Secrecy

Theorem: Let (Gen, Enc, Dec) be a perfectly-
secret encryption scheme over a message space

M, and let K be the key space as determined by
Gen. Then |K| = |M|.



Proof

Proof (by contradiction): We show that if
|K| < |M| then the scheme cannot be perfectly
secret.

* Assume |K| < |M|. Consider the uniform
distribution over M and let ¢ € C.

* Let M(c) be the set of all possible messages
which are possible decryptions of c.

M(c) == {f | i = Decy(c)for some k € K}



Proof

M(c) == {m | M = Decy(c)for some k € K}
 IM(c)| < |K|. Why?

 Since we assumed |K| < |M|, this means that
there is some m’ € M such thatm’ & M(c).

e But then
PriM =m'|C =c] =0 # Pr[M =m/]
And so the scheme is not perfectly secret.



Shannon’s Theorem

Let (Gen, Enc, Dec) be an encryption scheme
with message space M, for which |M| = |K| =
|C|. The scheme is perfectly secret if and only if:

1. Every key k € K is chosen with equal
probability 1/|K| by algorithm Gen.

2. Foreverym € M and every ¢ € C, there
exists a unique key k € K such that Encg,(m)
outputs c.

**Theorem only applies when |M| = |K| = |C].
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The Computational Approach to
Security
“An encryption scheme is secure if no adversary

learns meaningful about the
plaintext after seeing the ciphertext”

How do you formalize learns meaningful
?



The Computational Approach to
Security

* Meaningful Information about plaintext m:
— f(m) for an efficiently computable function f

* Learn Meaningful Information from the
ciphertext:

— An efficient algorithm that can output f (m) after
seeing ¢ but could not output f(m) before seeing c.

* Learn Meaningful Information:

— The change in probability that an efficient algorithm
can output f(m) after seeing ¢ and can output f(m)
before seeing c is significant.



