
Introduction to Cryptology 

Lecture 4 



Announcements 

• HW1 due today 

• HW2 up on course webpage, due Tuesday 
2/16 

• Readings/quizzes on Canvas due Friday 2/12 

• Looking ahead: next class we will do a longer 
class exercise on intractability 



Agenda 

• Last time: 
– Definition of info-theoretic security (Sec. 2.1) 

– Equivalent def’s and proofs of equivalence (Sec. 
2.1) 

• This time: 
– One time pad (OTP) (Sec. 2.2) 

– Limitations of perfect secrecy (Sec. 2.3) 

– Shannon’s Theorem (Sec. 2.4) 

– Intro to computational security 

 

 



The One-Time Pad (Vernam’s Cipher) 

• In 1917, Vernam patented a cipher now called 
the one-time pad that obtains perfect secrecy. 

• There was no proof of this fact at the time. 

• 25 years later, Shannon introduced the notion 
of perfect secrecy and demonstrated that the 
one-time pad achieves this level of security. 



The One-Time Pad Scheme 

1. Fix an integer ℓ > 0.  Then the message space 𝑀, key 
space 𝐾, and ciphertext space 𝐶 are all equal to 
0,1 ℓ. 

2. The key-generation algorithm 𝐺𝑒𝑛 works by choosing 
a string from 𝐾 = 0,1 ℓ according to the uniform 
distribution. 

3. Encryption 𝐸𝑛𝑐 works as follows:  given a key 
𝑘 ∈ 0,1 ℓ, and a message 𝑚 ∈ 0,1 ℓ,output 
𝑐 ≔ 𝑘 ⊕𝑚. 

4. Decryption 𝐷𝑒𝑐 works as follows:  given a key 
𝑘 ∈ 0,1 ℓ, and a ciphertext 𝑐 ∈ 0,1 ℓ, output 
𝑚 ≔ 𝑘⊕ 𝑐.  



Security of OTP 

Theorem:  The one-time pad encryption scheme 
is perfectly secure. 



Proof 

Proof: Fix some distribution over 𝑀 and fix an 
arbitrary 𝑚 ∈ 𝑀 and 𝑐 ∈ 𝐶. For one-time pad: 
Pr 𝐶 = 𝑐| 𝑀 = 𝑚 = Pr 𝑀⊕𝐾 = 𝑐 | 𝑀 = 𝑚  

= Pr 𝑚⊕𝐾 = 𝑐 = Pr 𝐾 = 𝑚⊕ 𝑐 = 
1

2ℓ
 

Since this holds for all distributions and all 𝑚, we 
have that for every probability distribution over 𝑀, 
every 𝑚0, 𝑚1 ∈ 𝑀 and every 𝑐 ∈ 𝐶 

Pr 𝐶 = 𝑐 𝑀 = 𝑚0] =  
1

2ℓ
= Pr 𝐶 = 𝑐|𝑀 = 𝑚1  



Drawbacks of OTP 

• Key length is the same as the message length. 

– For every bit communicated over a public channel, 
a bit must be shared privately. 

– We will see this is not just a problem with the OTP 
scheme, but an inherent problem in perfectly 
secret encryption schemes. 

• Key can only be used once. 

– You will see in the homework that this is also an 
inherent problem. 



Some Examples 

• Is the following scheme perfectly secret? 

• Message space 𝑴 = {0,1, … , 𝑛 − 1}.  Key 
space 𝑲 =  {0,1, … , 𝑛 − 1}. 

• Gen() chooses a key 𝑘 at random from 𝑲.   

• Enc𝑘 𝑚  returns 𝑚 +  𝑘.   

• 𝐷𝑒𝑐𝑘 𝑐  returns 𝑐 −  𝑘. 
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Limitations of Perfect Secrecy 

Theorem:  Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be a perfectly-
secret encryption scheme over a message space 
𝑴, and let 𝑲 be the key space as determined by 
𝐺𝑒𝑛.  Then 𝑲 ≥ |𝑴|. 

 



Proof 

Proof (by contradiction):  We show that if 
𝑲 < |𝑴| then the scheme cannot be perfectly 

secret. 

• Assume 𝑲 < 𝑴 .  Consider the uniform 
distribution over 𝑴 and let 𝑐 ∈ 𝑪. 

• Let 𝑴(𝑐) be the set of all possible messages 
which are possible decryptions of 𝑐. 

𝑴 𝑐 ≔ 𝑚    𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲} 



Proof 

𝑴 𝑐 ≔ { 𝑚  | 𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲} 

• 𝑴 𝑐 ≤ |𝑲|.  Why? 

• Since we assumed 𝑲 < |𝑴|, this means that 
there is some 𝑚′ ∈ 𝑴 such that 𝑚′ ∉ 𝑴 𝑐 . 

• But then 
Pr 𝑀 = 𝑚′| 𝐶 = 𝑐 = 0 ≠ Pr[𝑀 = 𝑚′] 

And so the scheme is not perfectly secret. 



Shannon’s Theorem 

Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be an encryption scheme 
with message space 𝑴, for which 𝑴 = 𝑲 =
|𝑪|.  The scheme is perfectly secret if and only if: 

1. Every key 𝑘 ∈ 𝑲 is chosen with equal 
probability 1/|𝑲| by algorithm 𝐺𝑒𝑛. 

2. For every 𝑚 ∈ 𝑴 and every 𝑐 ∈ 𝑪, there 
exists a unique key 𝑘 ∈ 𝑲 such that 𝐸𝑛𝑐𝑘(𝑚) 
outputs 𝑐. 

**Theorem only applies when 𝑴 = 𝑲 = |𝑪|. 
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The Computational Approach to 
Security 

“An encryption scheme is secure if no adversary 
learns meaningful information about the 
plaintext after seeing the ciphertext” 

 

How do you formalize learns meaningful 
information? 

 



The Computational Approach to 
Security 

• Meaningful Information about plaintext m: 
– 𝑓(𝑚) for an efficiently computable function 𝑓  

• Learn Meaningful Information from the 
ciphertext: 
– An efficient algorithm that can output 𝑓(𝑚) after 

seeing 𝑐 but could not output 𝑓 𝑚  before seeing 𝑐. 

• Learn Meaningful Information: 
– The change in probability that  an efficient algorithm 

can output 𝑓(𝑚) after seeing 𝑐 and can output 𝑓 𝑚  
before seeing 𝑐 is significant. 

 


