Introduction to Cryptology

Lecture 3
Announcements

• HW1 due on Tuesday, 2/9
• Readings and quizzes (on Canvas) due on Friday, 2/12
Agenda

• Last time:
 – Frequency analysis (Sec. 1.3)
 – Background and terminology

• This time:
 – Formal definition of symmetric key encryption (Sec. 2.1)
 – Definition of information-theoretic security (Sec. 2.1)
 – Variations on the definition and proofs of equivalence (Sec. 2.1)
 – One time pad (OTP) (Sec. 2.2)
Formally Defining a Symmetric Key Encryption Scheme
Syntax

• An encryption scheme is defined by three algorithms
 – Gen, Enc, Dec
• Specification of message space M with $|M| > 1$.
• Key-generation algorithm Gen:
 – Probabilistic algorithm
 – Outputs a key k according to some distribution.
 – Keyspace K is the set of all possible keys
• Encryption algorithm Enc:
 – Takes as input key $k \in K$, message $m \in M$
 – Encryption algorithm may be probabilistic
 – Outputs ciphertext $c \leftarrow Enc_k(m)$
 – Ciphertext space C is the set of all possible ciphertexts
• Decryption algorithm Dec:
 – Takes as input key $k \in K$, ciphertext $c \in C$
 – Decryption is deterministic
 – Outputs message $m := Dec_k(c)$
Distributions over K, M, C

- Distribution over K is defined by running Gen and taking the output.
 - For $k \in K$, $Pr[K = k]$ denotes the prob that the key output by Gen is equal to k.
- For $m \in M$, $Pr[M = m]$ denotes the prob. That the message is equal to m.
 - Models a priori knowledge of adversary about the message.
 - E.g. Message is English text.
- Distributions over K and M are independent.
- For $c \in C$, $Pr[C = c]$ denotes the probability that the ciphertext is c.
 - Given Enc, distribution over C is fully determined by the distributions over K and M.
Definition of Perfect Secrecy

An encryption scheme \((Gen, Enc, Dec)\) over a message space \(M\) is perfectly secret if for every probability distribution over \(M\), every message \(m \in M\), and every ciphertext \(c \in C\) for which \(Pr[C = c] > 0\):
\[
Pr[M = m \mid C = c] = Pr[M = m].
\]
An Equivalent Formulation

• Lemma: An encryption scheme \((Gen, Enc, Dec)\) over a message space \(M\) is perfectly secret if and only if for every probability distribution over \(M\), every message \(m \in M\), and every ciphertext \(c \in C\):
 \[
 \Pr[C = c | M = m] = \Pr[C = c] .
 \]
Basic Logic

• Usually want to prove statements like \(P \rightarrow Q \) ("if \(P \) then \(Q \))

• To prove a statement \(P \rightarrow Q \) we may:
 – Assume \(P \) is true and show that \(Q \) is true.
 – Prove the contrapositive: Assume that \(Q \) is false and show that \(P \) is false.
Basic Logic

• Consider a statement $P \iff Q$ (P if and only if Q)
 – Ex: Two events X, Y are independent if and only if
 $\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y]$.

• To prove a statement $P \iff Q$ it is sufficient to prove:
 – $P \rightarrow Q$
 – $Q \rightarrow P$
Proof (Preliminaries)

• Recall Bayes’ Theorem:

$$-\Pr[A | B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B]}$$

• We will use it in the following way:

$$-\Pr[M = m | C = c] = \frac{\Pr[C=c | M=m] \cdot \Pr[M=m]}{\Pr[C=c]}$$
Proof

Proof: →

• To prove: If an encryption scheme is perfectly secret then

“for every probability distribution over \(M \), every message \(m \in M \), and every ciphertext \(c \in C \):

\[
\Pr[C = c | M = m] = \Pr[C = c].
\]"
Proof (cont’d)

• Fix some probability distribution over \mathbf{M}, some message $m \in \mathbf{M}$, and some ciphertext $c \in \mathbf{C}$.

• By perfect secrecy we have that
 \[\Pr[M = m \mid \mathbf{C} = c] = \Pr[M = m]. \]

• By Bayes’ Theorem we have that:
 \[
 \Pr[M = m \mid \mathbf{C} = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} = \Pr[M = m].
 \]

• Rearranging terms we have:
 \[\Pr[C = c \mid M = m] = \Pr[C = c]. \]
Perfect Indistinguishability

• Lemma: An encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) over a message space \(M\) is perfectly secret if and only if for every probability distribution over \(M\), every \(m_0, m_1 \in M\), and every ciphertext \(c \in C\):

\[
\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1].
\]
Proof (Preliminaries)

• Let F, E_1, \ldots, E_n be events such that $\Pr[E_1 \lor \cdots \lor E_n] = 1$ and $\Pr[E_i \land E_j] = 0$ for all $i \neq j$.

• The E_i partition the space of all possible events so that with probability 1 exactly one of the events E_i occurs. Then

$$\Pr[F] = \sum_{i=1}^{n} \Pr[F \land E_i]$$
Proof Preliminaries

• We will use the above in the following way:
• For each $m_i \in M$, E_{m_i} is the event that $M = m_i$.
• F is the event that $C = c$.
• Note $\Pr[E_{m_1} \lor \cdots \lor E_{m_n}] = 1$ and $\Pr[E_{m_i} \land E_{m_j}] = 0$ for all $i \neq j$.
• So we have:

\[
- \quad \Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m] \\
= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]
\]
Proof

Assume the encryption scheme is perfectly secret. Fix messages \(m_0, m_1 \in M \) and ciphertext \(c \in C \).

\[
\Pr[C = c | M = m_0] = \Pr[C = c] = \Pr[C = c | M = m_1]
\]
Proof

Proof ←

• Assume that for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:

 $$\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1].$$

• Fix some distribution over M, and arbitrary $m_0 \in M$ and $c \in C$.

• Define $p = \Pr[C = c \mid M = m_0]$.

• Note that for all m:

 $$\Pr[C = c \mid M = m] = \Pr[C = c \mid M = m_0] = p.$$
Proof

• \(\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m] \)

\[
= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]
\]

\[
= \sum_{m \in M} p \cdot \Pr[M = m]
\]

\[
= p \cdot \sum_{m \in M} \Pr[M = m]
\]

\[
= p
\]

\[
= \Pr[C = c | M = m_0]
\]

Since \(m \) was arbitrary, we have shown that \(\Pr[C = c] = \Pr[C = c | M = m] \) for all \(c \in C, m \in M \).

So we conclude that the scheme is perfectly secret.