Introduction to Cryptology

Lecture 25

Announcements

- HW10 due next class (5/5)
- Extra credit due 5/5
- Stay tuned for survey about review session for final exam.

Agenda

- Last time:
 - Diffie-Hellman Key Exchange (10.3)
 - Public Key Encryption Definitions (11.2)
 - El Gamal Encryption (11.4)
- This time:

- RSA Encryption and Weaknesses (11.5)

RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ run GenRSA(1ⁿ) to obtain N, e, and d. The public key is ⟨N, e⟩ and the private key is ⟨N, d⟩.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \mathbb{Z}_N^*$, compute the ciphertext

 $c := [m^e \mod N].$

• Dec: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}_N^*$, compute the message

$$m := [c^d \mod N].$$

The plain RSA encryption scheme.

RSA Example

$$p = 3, q = 7, N = 21$$

 $\phi(N) = 12$
 $e = 5$
 $d = 5$
 $Enc_{(21,5)}(11) = 4^5 \mod 21 = 16 \mod 22$

 $Dec_{21,5}(16) = 16^5 \mod 21 = 4^5 \cdot 4^5 \mod 21$ $= 16 \cdot 16 \mod 21 = 4$

Is Plain-RSA Secure?

• It is deterministic so cannot be secure!

Encrypting short messages using small *e*:

- When $m < N^{1/e}$, raising m to the e-th power modulo N involves no modular reduction.
- Can compute $m = c^{1/e}$ over the integers.

Encrypting a partially known message:

Coppersmith's Theorem: Let p(x) be a polynomial of degree *e*. Then in time poly(log(N), e) one can find all *m* such that $p(m) = 0 \mod N$ and $m \le N^{1/e}$.

In the following, we assume e = 3. Assume message is $m = m_1 \prod m_2$, where m_1 is k

Assume message is $m = m_1 || m_2$, where m_1 is known, but not m_2 .

So $m = 2^k \cdot m_1 + m_2$. Define $p(x) \coloneqq (2^k \cdot m_1 + x)^3 - c$. This polynomial has m_2 as a root and $m \le 2^k \le N^{1/3}$.

Encrypting related messages:

Assume the sender encrypts both m and $m + \delta$, giving two ciphertexts c_1 and c_2 .

Define $f_1(x) \coloneqq x^e - c_1$ and $f_2(x) \coloneqq (x + \delta)^e - c_2$.

x = m is a root of both polynomials.

(x - m) is a factor of both.

Use algorithm for finding gcd of polynomials.

Sending the same message to multiple receivers: $pk_1 = \langle N_1, 3 \rangle, pk_2 = \langle N_2, 3 \rangle, pk_3 = \langle N_3, 3 \rangle.$ Eavesdropper sees:

$$c_1 = m^3 \mod N_1, c_2 = m^3 \mod N_2, c_3 = m^3 \mod N_3$$

Let $N^* = N_1 \cdot N_2 \cdot N_3$.

Using Chinese remainder theorem to find $\hat{c} < N^*$ such that:

$$\hat{c} = c_1 \mod N_1$$
$$\hat{c} = c_2 \mod N_2$$
$$\hat{c} = c_3 \mod N_3.$$

Note that m^3 satisfies all three equations. Moreover, $m^3 < N^*$. Thus, we can solve for $m^3 = \hat{c}$ over the integers.

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2n - 4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to obtain (N, e, d). Output the public key pk = ⟨N, e⟩, and the private key sk = ⟨N, d⟩.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \{0, 1\}^{\|N\| \ell(n) 2}$, choose a random string $r \leftarrow \{0, 1\}^{\ell(n)}$ and interpret $\hat{m} := 1 \|r\| m$ as an element of \mathbb{Z}_N^* . Output the ciphertext

$$c := [\hat{m}^e \mod N].$$

Dec: on input a private key sk = ⟨N, d⟩ and a ciphertext c ∈ Z^{*}_N, compute

$$\hat{m} := [c^d \mod N],$$

and output the $||N|| - \ell(n) - 2$ least-significant bits of \hat{m} .

The padded RSA encryption scheme.