1. **Partially Known Message.**

Coppersmith's Theorem: Let \(p(x) \) be a polynomial of degree \(e \). Then in time \(poly(\log(N), e) \) one can find all \(m \) such that \(p(m) = 0 \mod N \) and \(m \leq N^{1/e} \).

Assume message is \(m = m_1||m_2 \), where \(m_1 \) is known, but \(m_2 \) (which consists of \(k \) bits) is not known. Using Coppersmith’s Theorem, show how to recover \(m \) given the ciphertext \(c \), assuming \(k \) is not too large.

Hint: Note that \(m \) can be expressed as \(m = 2^k m_1 + m_2 \).

2. **Related Messages.**

Euclidean Algorithm for Polynomials: Let \(f(x) \) and \(g(x) \) be two polynomials over \(\mathbb{Z}_N^* \). Then a slightly modified version of the Euclidean GCD Algorithm can be used to determine the greatest common divisor of \(f, g \) as polynomials over \(\mathbb{Z}_N^* \).

Assume the sender encrypts both \(m \) and \(m + \delta \), for known \(\delta \), unknown \(m \) giving two ciphertexts \(c_1 \) and \(c_2 \). Use the Euclidean algorithm for polynomials to show how to recover \(m \) given knowledge of \(\delta \) and given the two ciphertexts \(c_1, c_2 \).
3. Sending the same message to multiple receivers:

The following is a slightly extended version of Chinese Remainder Theorem than the one we saw in class for the case where there are 3 moduli.

Chinese Remainder Theorem. Let N_1, N_2, N_3 be pairwise relatively prime. Then for every c_1, c_2, c_3, there exists a unique non-negative integer \hat{c} such that:

\[
\hat{c} = c_1 \mod N_1 \\
\hat{c} = c_2 \mod N_2 \\
\hat{c} = c_3 \mod N_3.
\]

Assume there are three receivers with public keys:

$pk_1 = \langle N_1, 3 \rangle, pk_2 = \langle N_2, 3 \rangle, pk_3 = \langle N_3, 3 \rangle$.

A sender sends the same encrypted message m to all three receivers so an eavesdropper sees:

$c_1 = m^3 \mod N_1, c_2 = m^3 \mod N_2, c_3 = m^3 \mod N_3$

Show how to use the Chinese Remainder Theorem to recover m.