
Introduction to Cryptology 

Lecture 21 



Announcements 

• HW 9 up on Canvas, due 4/28 

– **Deadline extended 



Agenda 

• Last time: 

– Number theory background (8.2) 

 

• This time: 

– Number theory background 

– Hard problems 



Cyclic Groups 

For a finite group 𝐺 of order 𝑚 and 𝑔 ∈ 𝐺, 
consider: 

𝑔 = {𝑔0, 𝑔1, … , 𝑔𝑚−1} 
𝑔  always forms a cyclic subgroup of 𝐺. 

However, it is possible that there are repeats in the 
above list. 
Thus 𝑔  may be a subgroup of order smaller than 
𝑚. 
If 𝑔 = 𝐺, then we say that 𝐺 is a cyclic group and 
that 𝑔 is a generator of 𝐺. 



Examples 
Consider 𝑍∗

13: 

 

 
20 1 

21 2 

22 4 

23 8 

24 16 → 3 

25 6 

26 12 

27 24 → 11 

28 22 → 9 

29 18 → 5 

210 10 

211 20 → 7 

212 14 → 1 

2 is a generator of 𝑍∗
13: 3 is not a generator of 𝑍∗

13: 

30 1 

31 3 

32 9 

33 27 → 1 

34 3 

35 9 

36 27 → 1 

37 3 

38 9 

39 27 → 1 

310 3 

311 9 

312 27 → 1 



Definitions and Theorems 

Definition:  Let 𝐺 be a finite group and 𝑔 ∈ 𝐺.  The order 
of 𝑔 is the smallest positive integer 𝑖 such that 𝑔𝑖 = 1. 
 Ex:  Consider 𝑍13

∗ .  The order of 2 is 12.  The order 
 of 3 is 3. 
 
Proposition 1: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖.  Then for any integer 𝑥, we have 
𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑖. 
 
Proposition 2: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖. Then 𝑔𝑥 = 𝑔𝑦 iff 𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑖. 



More Theorems 

Proposition 3:  Let 𝐺 be a finite group of order 𝑚 and 𝑔 ∈ 𝐺 an element of 
order 𝑖.  Then 𝑖 |𝑚. 
 
Proof:   
• We know by the generalized theorem of last class that 𝑔𝑚 = 1 = 𝑔0. 
• By Proposition 1, we have that 𝑔𝑚 = 𝑔𝑚 𝑚𝑜𝑑 𝑖 = 𝑔0. 
• By the ← direction of Proposition 2, we have that 0 ≡ 𝑚 𝑚𝑜𝑑 𝑖. 
• By definition of modulus, this means that 𝑖|𝑚. 
 
Corollary:  if 𝐺 is a group of prime order 𝑝, then 𝐺 is cyclic and all elements of 
𝐺 except the identity are generators of 𝐺. 
 
Why does this follow from Proposition 3? 
 

Theorem:  If 𝑝 is prime then 𝑍∗
𝑝 is a cyclic group of order 𝑝 − 1.  



Prime-Order Cyclic Groups 

Consider 𝑍∗
𝑝, where 𝑝 is a strong prime. 

• Strong prime:  𝑝 = 2𝑞 + 1, where 𝑞 is also 
prime. 

• Recall that 𝑍∗
𝑝 is a cyclic group of order 

𝑝 − 1 = 2𝑞. 

 

The subgroup of quadratic residues in 𝑍∗
𝑝 is a 

cyclic group of prime order 𝑞. 



Example of Prime-Order Cyclic Group 
Consider 𝑍∗

11. 

Note that 11 is a strong prime, since 11 = 2 ⋅ 5 + 1. 

𝑔 = 2 is a generator of 𝑍∗
11: 

 20 1 

21 2 

22 4 

23 8 

24 16 → 5 

25 10 

26 20 → 9 

27 18 → 7 

28 14 → 3 

29 6 

The even powers of 𝑔 are the “quadratic residues” (i.e. the perfect 
squares).  Exactly half the elements of 𝑍∗

𝑝 are quadratic residues. 

 
Note that the even powers of 𝑔 form a cyclic subgroup of order 
𝑝−1

2
= 𝑞. 

 
Verify:   
• closure (Multiplication translates into addition in the exponent.  

Addition of two even numbers mod 𝑝 − 2 gives an even number 
mod 𝑝 − 1, since for prime 𝑝 > 3, 𝑝 − 1 is even.) 

• Cyclic –any element is a generator.  E.g. it is easy to see that all 
even powers of 𝑔 can be generated by 𝑔2. 

  



The Discrete Logarithm Problem 

The discrete-log experiment 𝐷𝐿𝑜𝑔𝐴,𝑮(𝑛) 
1. Run 𝑮 1𝑛  to obtain (𝐺, 𝑞, 𝑔) where 𝐺 is a cyclic group of 

order 𝑞 (with 𝑞 = 𝑛) and 𝑔 is a generator of 𝐺. 
2. Choose a uniform ℎ ∈ 𝐺 

3. 𝐴 is given 𝐺, 𝑞, 𝑔, ℎ and outputs 𝑥 ∈ 𝑍𝑞 
4. The output of the experiment is defined to be 1 if 𝑔𝑥 = ℎ 

and 0 otherwise. 
 
Definition: We say that the DL problem is hard relative to 𝑮 if 
for all ppt algorithms 𝐴 there exists a negligible function 𝑛𝑒𝑔 
such that  

Pr 𝐷𝐿𝑜𝑔𝐴,𝑮 𝑛 = 1 ≤ 𝑛𝑒𝑔(𝑛) . 



The Diffie-Hellman Problems 

 



The CDH Problem 

Given (𝐺, 𝑞, 𝑔) and uniform ℎ1 = 𝑔𝑥1 , ℎ2 = 𝑔𝑥2, 
compute 𝑔𝑥1⋅𝑥2. 



The DDH Problem 

We say that the DDH problem is hard relative to 𝑮 if 
for all ppt algorithms 𝐴, there exists a negligible 
function 𝑛𝑒𝑔 such that 
|Pr 𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦 , 𝑔𝑧 = 1

− Pr 𝐴 𝐺, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦 , 𝑔𝑥𝑦 = 1 | ≤ 𝑛𝑒𝑔 𝑛 . 

 



Relative Hardness of the Assumptions 

Breaking DLog → Breaking CDH → Breaking DDH 

 

DDH Assumption → CDH Assumption → DLog 
Assumption 


