Introduction to Cryptology

Lecture 21

Announcements

• HW 9 up on Canvas, due 4/28

– **Deadline extended

Agenda

• Last time:

Number theory background (8.2)

- This time:
 - Number theory background
 - Hard problems

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g\rangle = \{g^0, g^1, \dots, g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider
$$Z^*_{13}$$
:

2 is a generator of Z^*_{13} :

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	$16 \rightarrow 3$
2 ⁵	6
2 ⁶	12
27	$24 \rightarrow 11$
2 ⁸	$22 \rightarrow 9$
2 ⁹	$18 \rightarrow 5$
2 ¹⁰	10
211	$20 \rightarrow 7$
212	$14 \rightarrow 1$

3 is not a generator of Z^*_{13} :

30	1
	1
31	3
3 ²	9
3 ³	$27 \rightarrow 1$
34	3
35	9
36	$27 \rightarrow 1$
37	3
3 ⁸	9
3 ⁹	$27 \rightarrow 1$
310	3
311	9
312	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$.

Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 1, we have that $g^m = g^{m \mod i} = g^0$.
- By the \leftarrow direction of Proposition 2, we have that $0 \equiv m \mod i$.
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z_{p}^{*} is a cyclic group of order p-1.

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z_{p}^{*} is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in Z_p^* is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} . Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$. g = 2 is a generator of Z^*_{11} :

2 ⁰	1
21	2
2 ²	4
2 ³	8
24	16 → 5
2 ⁵	10
2 ⁶	$20 \rightarrow 9$
27	$18 \rightarrow 7$
2 ⁸	$14 \rightarrow 3$
29	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent.
 Addition of two even numbers mod p − 2 gives an even number mod p − 1, since for prime p > 3, p − 1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $h \in G$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to G if for all ppt algorithms A there exists a negligible function neg such that

$$\Pr[DLog_{A,G}(n) = 1] \le neg(n).$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_1 = g^{x_1}, h_2 = g^{x_2}$, compute $g^{x_1 \cdot x_2}$.

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G, q, g, g^{x}, g^{y}, g^{z}) = 1] - \Pr[A(G, q, g, g^{x}, g^{y}, g^{xy}) = 1]| \le neg(n).$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption