
Introduction to Cryptology 

Lecture 20 



Announcements 

• HW8 due Tuesday, 4/19 

• TA OH Monday 4/18 4pm-6pm 



Agenda 

• More Number Theory! 



Generalized Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = |𝐺|, 
the order of the group.  Then for any element 
𝑔 ∈ 𝐺, 𝑔𝑚 = 1. 

 

Corollary of Fermat’s Little Theorem is a special 
case of the above when 𝐺 is the multiplicative 
group 𝑍∗𝑝 and 𝑝 is prime. 



Multiplicative Groups Mod N 

• What about multiplicative groups modulo 𝑁, where 𝑁 
is composite? 

• Which numbers 1,… ,𝑁 − 1  have multiplicative 
inverses 𝑚𝑜𝑑 𝑁? 
– 𝑎 such that gcd 𝑎,𝑁 = 1 has multiplicative inverse by 

Extended Euclidean Algorithm. 
– 𝑎 such that gcd 𝑎,𝑁 > 1  does not, since gcd 𝑎,𝑁  is the 

smallest positive integer that can be written in the form 
𝑋𝑎 + 𝑌𝑁 for integer 𝑋, 𝑌. 

• Define 𝑍∗𝑁 ≔ {𝑎 ∈ 1,… ,𝑁 − 1 | gcd 𝑎,𝑁 = 1}.   

• 𝑍∗𝑁 is an abelian, multiplicative group. 
– Why does closure hold? 



Order of Multiplicative Groups Mod N 

• What is the order of 𝑍∗𝑁? 

• This has a name.  The order of 𝑍∗𝑁 is the 
quantity 𝜙(𝑁), where 𝜙 is known as the Euler 
totient function or Euler phi function. 

• Assume 𝑁 = 𝑝 ⋅ 𝑞, where 𝑝, 𝑞 are distinct 
primes. 

– 𝜙 𝑁 = 𝑁 − 𝑝 − 𝑞 + 1 = 𝑝 ⋅ 𝑞 − 𝑝 − 1 + 1 =
𝑝 − 1 𝑞 − 1 . 

– Why? 

 



Order of Multiplicative Groups Mod N 

General Formula: 

Theorem:  Let 𝑁 =  𝑝𝑖
𝑒𝑖

𝑖  where the 𝑝𝑖  are 
distinct primes and 𝑒𝑖 ≥ 1.  Then 

𝜙 𝑁 =  𝑝𝑖
𝑒𝑖−1(𝑝𝑖 − 1)

𝑖

. 



Another Special Case of Generalized 
Theorem 

Corollary of generalized theorem: 

For 𝑎 such that gcd 𝑎, 𝑁 = 1: 

𝑎𝜙(𝑁) ≡ 1 𝑚𝑜𝑑 𝑁. 



Another Useful Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = 𝐺 >
1.  Then for any 𝑔 ∈ 𝐺 and any integer 𝑥, we have 

𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 

Proof:  We write 𝑥 = 𝑎 ⋅ 𝑚 + 𝑏, where 𝑎 is an 
integer and 𝑏 ≡ 𝑥 𝑚𝑜𝑑 𝑚. 

• 𝑔𝑥 = 𝑔𝑎⋅𝑚+𝑏 = 𝑔𝑚 𝑎 ⋅ 𝑔𝑏 

• By “generalized theorem” we have that  
𝑔𝑚 𝑎 ⋅ 𝑔𝑏 = 1𝑎 ⋅ 𝑔𝑏 = 𝑔𝑏 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 



An Example: 

Compute 325 𝑚𝑜𝑑 35 by hand. 

 
𝜙 35 = 𝜙 5 ⋅ 7 = 5 − 1 7 − 1 = 24 

325 ≡ 325 𝑚𝑜𝑑 24 𝑚𝑜𝑑 35 ≡ 31 𝑚𝑜𝑑 35
≡ 3 𝑚𝑜𝑑 35. 



Background for RSA 
Recall that we saw last time that  

 𝑎𝑚 ≡ 𝑎𝑚 𝑚𝑜𝑑 𝜙 𝑁  𝑚𝑜𝑑 𝑁. 
 

For 𝑒 ∈ 𝑍∗𝑁, let 𝑓𝑒: 𝑍𝑁
∗ → 𝑍𝑁

∗  be defined as 𝑓𝑒 𝑥 ≔ 𝑥
𝑒 𝑚𝑜𝑑 𝑁. 

 
Theorem:  𝑓𝑒(𝑥) is a permutation. 
Proof:  To prove the theorem, we show that 𝑓𝑒(𝑥) is invertible. 
Let 𝑑 be the multiplicative inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁). 
Then for 𝑦 ∈ 𝑍𝑁

∗ , 𝑓𝑑 𝑦 ≔ 𝑦
𝑑 𝑚𝑜𝑑 𝑁 is the inverse of 𝑓𝑒. 

 
To see this, we show that 𝑓𝑑 𝑓𝑒 𝑥 = 𝑥. 

𝑓𝑑 𝑓𝑒 𝑥 = 𝑥
𝑒 𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝜙(𝑁) 𝑚𝑜𝑑 𝑁 = 𝑥1 𝑚𝑜𝑑 𝑁 =

𝑥 𝑚𝑜𝑑 𝑁.  
 
Note:  Given 𝑑, it is easy to compute the inverse of 𝑓𝑒 
However, we saw in the homework that given only 𝑒, 𝑁, it is hard to find 𝑑, since 
finding 𝑑 implies that we can factor 𝑁 = 𝑝 ⋅ 𝑞. 
This will be important for cryptographic applications.  



Chinese Remainder Theorem 



Going from 𝑎, 𝑏 ∈  𝑍𝑝 × 𝑍𝑞   

to 𝑥 ∈  𝑍𝑁 
Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that 

𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

Recall since gcd 𝑝, 𝑞 = 1 we can write 
𝑋𝑝 + 𝑌𝑞 = 1 

Note that  
𝑋𝑝 ≡ 0 𝑚𝑜𝑑 𝑝 
𝑋𝑝 ≡ 1 𝑚𝑜𝑑 𝑞 

Whereas 
𝑌𝑞 ≡ 1 𝑚𝑜𝑑 𝑝 
𝑌𝑞 ≡ 0 𝑚𝑜𝑑 𝑝 



Going from 𝑎, 𝑏 ∈  𝑍𝑝 × 𝑍𝑞   

to 𝑥 ∈  𝑍𝑁 

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that 
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

Claim: 
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

 

Therefore, 𝑥 ≡ 𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 𝑚𝑜𝑑 𝑁 

 


