Announcements

• HW8 due Tuesday, 4/19
• TA OH Monday 4/18 4pm-6pm
Agenda

• More Number Theory!
Generalized Theorem

Theorem: Let G be a finite group with $m = |G|$, the order of the group. Then for any element $g \in G$, $g^m = 1$.

Corollary of Fermat’s Little Theorem is a special case of the above when G is the multiplicative group \mathbb{Z}^*_p and p is prime.
Multiplicative Groups Mod N

• What about multiplicative groups modulo N, where N is composite?
• Which numbers $\{1, \ldots, N - 1\}$ have multiplicative inverses $mod\ N$?
 – a such that $gcd(a, N) = 1$ has multiplicative inverse by Extended Euclidean Algorithm.
 – a such that $gcd(a, N) > 1$ does not, since $gcd(a, N)$ is the smallest positive integer that can be written in the form $Xa + YN$ for integer X, Y.
• Define $\mathbb{Z}^*_N := \{a \in \{1, \ldots, N - 1\}| gcd(a, N) = 1\}$.
• \mathbb{Z}^*_N is an abelian, multiplicative group.
 – Why does closure hold?
Order of Multiplicative Groups Mod N

- What is the order of \mathbb{Z}^*_N?
- This has a name. The order of \mathbb{Z}^*_N is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.
 - $\phi(N) = N - p - q + 1 = p \cdot q - p - 1 + 1 = (p - 1)(q - 1)$.
 - Why?
Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let \(N = \prod_i p_i^{e_i} \) where the \(\{p_i\} \) are distinct primes and \(e_i \geq 1 \). Then

\[
\phi(N) = \prod_i p_i^{e_i-1}(p_i - 1).
\]
Another Special Case of Generalized Theorem

Corollary of generalized theorem:
For a such that $\gcd(a, N) = 1$:
$$a^{\phi(N)} \equiv 1 \mod N.$$
Another Useful Theorem

Theorem: Let G be a finite group with $m = |G| > 1$. Then for any $g \in G$ and any integer x, we have

$$g^x = g^{x \mod m}.$$

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

- $g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$
- By “generalized theorem” we have that

$$ (g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \mod m}. $$
An Example:

Compute $3^{25} \mod 35$ by hand.

$$\phi(35) = \phi(5 \cdot 7) = (5 - 1)(7 - 1) = 24$$

$$3^{25} \equiv 3^{25} \mod 24 \mod 35 \equiv 3^1 \mod 35$$

$$\equiv 3 \mod 35.$$
Background for RSA

Recall that we saw last time that
\[a^m \equiv a^{m \mod \phi(N)} \mod N. \]

For \(e \in Z_N^* \), let \(f_e : Z_N^* \to Z_N^* \) be defined as \(f_e(x) := x^e \mod N \).

Theorem: \(f_e(x) \) is a permutation.
Proof: To prove the theorem, we show that \(f_e(x) \) is invertible.
Let \(d \) be the multiplicative inverse of \(e \mod \phi(N) \).
Then for \(y \in Z_N^* \), \(f_d(y) := y^d \mod N \) is the inverse of \(f_e \).

To see this, we show that \(f_d(f_e(x)) = x \).
\[
f_d(f_e(x)) = (x^e)^d \mod N = x^{e \cdot d} \mod N = x^{e \cdot d \mod \phi(N)} \mod N = x^1 \mod N = x \mod N.
\]

Note: Given \(d \), it is easy to compute the inverse of \(f_e \).
However, we saw in the homework that given only \(e, N \), it is hard to find \(d \), since finding \(d \) implies that we can factor \(N = p \cdot q \).
This will be important for cryptographic applications.
Chinese Remainder Theorem
Going from \((a, b) \in \mathbb{Z}_p \times \mathbb{Z}_q\) to \(x \in \mathbb{Z}_N\)

Find the unique \(x \mod N\) such that
\[
x \equiv a \mod p \\
x \equiv b \mod q
\]

Recall since \(\gcd(p, q) = 1\) we can write
\[
Xp + Yq = 1
\]

Note that
\[
Xp \equiv 0 \mod p \\
Xp \equiv 1 \mod q
\]

Whereas
\[
Yq \equiv 1 \mod p \\
Yq \equiv 0 \mod p
\]
Going from \((a, b) \in \mathbb{Z}_p \times \mathbb{Z}_q\) to \(x \in \mathbb{Z}_N\)

Find the unique \(x \mod N\) such that
\[
x \equiv a \mod p \\
x \equiv b \mod q
\]

Claim:
\[
b \cdot X_p + a \cdot Y_q \equiv a \mod p \\
b \cdot X_p + a \cdot Y_q \equiv b \mod q
\]

Therefore, \(x \equiv b \cdot X_p + a \cdot Y_q \mod N\)