Authenticated Encryption

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$:

1. Run $Gen(1^n)$ to obtain key k.

2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.

3. Let $m := Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.
Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[\text{EncForge}_{A,\Pi}(n) = 1] \leq \text{neg}(n).$$

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.
Generic Constructions
Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

\[c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(m) \]

\[\langle c, t \rangle \]

Is this secure? NO!
Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m) \quad c \leftarrow Enc_{k_E}(m||t)$$

c is sent

Is this secure? NO! Encryption scheme may not be CCA-secure.
Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$

$\langle c, t \rangle$

Is this secure? YES! As long as the MAC is strongly secure.
Secure Authenticated Encryption Scheme

Let $\Pi_E = (Enc, Dec)$ be a CPA-secure private key encryption scheme. Let $\Pi_M = (Mac, Vrfy)$ be a strongly secure MAC. In each case key generation is done by choosing a uniform n-bit key. Define (Gen', Enc', Dec') as follows:

- **Gen'**: on input 1^n, choose independent, uniform $k_E, k_M \in \{0,1\}^n$ and output the key (k_E, k_M).
- **Enc'**: on input a key (k_E, k_M) and a plaintext message m, compute $c \leftarrow Enc_{k_E}(m), t \leftarrow Mac_{k_M}(c)$. Output $\langle c, t \rangle$.
- **Dec'**: on input a key (k_E, k_M) and a ciphertext $\langle c, t \rangle$, first check whether $Vrfy_{k_M}(c, t) = 1$. If yes, output $Dec_{k_E}(c)$; if no, then output \bot.
Secure Authenticated Encryption Scheme

Theorem: Let Π_E be a CPA-secure private-key encryption scheme and let Π_M be a strongly secure message authentication code. Then the construction is an authenticated encryption scheme.
Collision Resistant Hashing
Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following:

- Gen takes as input a security parameter 1^n and outputs a key s. We assume that 1^n is implicit in s.
- H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ'. In this case, we also call H a compression function.
The collision-finding experiment

Hashcoll\textsubscript{A,Π}(n):
1. A key \(s \) is generated by running \(Gen(1^n) \).
2. The adversary \(A \) is given \(s \) and outputs \(x, x' \). (If \(Π \) is a fixed-length hash function for inputs of length \(ℓ'(n) \), then we require \(x, x' \in \{0,1\}^{ℓ'(n)} \).)
3. The output of the experiment is defined to be 1 if and only if \(x \neq x' \) and \(H^s(x) = H^s(x') \). In such a case we say that \(A \) has found a collision.
Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries A there is a negligible function neg such that

$$\Pr[\text{Hashcoll}_{A,\Pi}(n) = 1] \leq \text{neg}(n).$$
Weaker Notions of Security

• Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$.

• Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$.
Domain Extension
The Merkle-Damgard Transform

FIGURE 5.1: The Merkle-Damgård transform.
The Merkle-Damgard Transform

Let \((Gen, h)\) be a fixed-length hash function for inputs of length \(2n\) and with output length \(n\). Construct hash function \((Gen, H)\) as follows:

- **Gen**: remains unchanged
- **H**: on input a key \(s\) and a string \(x \in \{0,1\}^*\) of length \(L < 2^n\), do the following:
 1. Set \(B := \left\lceil \frac{L}{n} \right\rceil\) (i.e., the number of blocks in \(x\)). Pad \(x\) with zeros so its length is a multiple of \(n\). Parse the padded result as the sequence of \(n\)-bit blocks \(x_1, \ldots, x_B\). Set \(x_{B+1} := L\), where \(L\) is encoded as an \(n\)-bit string.
 2. Set \(z_0 := 0^n\). (This is also called the IV.)
 3. For \(i = 1, \ldots, B + 1\), compute \(z_i := h^s(z_{i-1}||x_i)\).
 4. Output \(z_{B+1}\).
Security of Merkle-Damgard

Theorem: If \((Gen, h)\) is collision resistant, then so is \((Gen, H)\).
Message Authentication Using Hash Functions
Hash-and-Mac Construction

Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows:

- Gen': on input 1^n, choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' := \langle k, s \rangle$.
- Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.
- $Vrfy'$: on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.
Proof Intuition

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

1. $H^S(m^*) = H^S(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^S.

2. $H^S(m^*) \neq H^S(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π.
Can we construct a MAC from only CRHF?

Attempt: \(\text{Mac}_k(m) = H(k||m) \).

Is this secure?

NO. Why not?

Instead, we will try 2 layers of hashing.