Introduction to Cryptology

Lecture 11
Announcements

• HW5 up on course webpage, due 3/8
• Midterm: coming up on 3/10
 – Canvas survey to determine review session held by Mukul. Please vote.
Agenda

• Last time:
 – Block Ciphers (3.5)
 – Modes of Operation (3.6)
 – Started MAC (4.2)

• This time:
 – Security Definition for MAC (4.2)
 – Constructing MAC from PRF
 – Class Exercise
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms \((Gen, Mac, Vrfy)\) such that:

1. The key-generation algorithm \(Gen\) takes as input the security parameter \(1^n\) and outputs a key \(k\) with \(|k| \geq n\).

2. The tag-generation algorithm \(Mac\) takes as input a key \(k\) and a message \(m \in \{0,1\}^*\), and outputs a tag \(t\).
 \[t \leftarrow Mac_k(m). \]

3. The deterministic verification algorithm \(Vrfy\) takes as input a key \(k\), a message \(m\), and a tag \(t\). It outputs a bit \(b\) with \(b = 1\) meaning valid and \(b = 0\) meaning invalid.
 \[b := Vrfy_k(m, t). \]

It is required that for every \(n\), every key \(k\) output by \(Gen(1^n)\), and every \(m \in \{0,1\}^*\), it holds that \(Vrfy_k(m, Mac_k(m)) = 1\).
Security of MACs

The message authentication experiment $MAC_{forge_{A,\Pi}}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
\Pr[MAC_{\text{forge}}_{A,\Pi}(n) = 1] \leq neg(n).
\]
Strong MACs

The strong message authentication experiment $MAC_{\text{forge}}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.

2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.

3. A succeeds if and only if (1) $Vrf_{y_k}(m, t) = 1$ and (2) $(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MACsforge_{A,\Pi}(n) = 1] \leq neg(n).$$
Constructing Secure Message Authentication Codes
A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

• Mac: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t := F_k(m)$.

• $Vrfy$: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.
Security Analysis

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.
Security Analysis

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D: D gets oracle access to oracle O, which is either F_k, where F is pseudorandom or f which is truly random.

1. Instantiate $A^{Mac_k(\cdot)(1^n)}$.
2. When A queries its oracle with message m, output $O(m)$.
3. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
4. If $m^* \in Q$, output 0.
5. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^*.
6. If $t^* = z^*$ output 1. Otherwise, output 0.
Security Analysis

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k.

- When O is pseudorandom, D outputs 1 with probability $\Pr[\text{MACforge}_{A,\Pi}(n) = 1] = \rho(n)$, where ρ is non-negligible.
- When O is random, D outputs 1 with probability at most $\frac{1}{2^n}$. Why?
Security Analysis

D’s distinguishing probability is:

$$\left| \frac{1}{2^n} - \rho(n) \right| = \rho(n) - \frac{1}{2^n}.$$

Since, $\frac{1}{2^n}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n) - \frac{1}{2^n}$ is non-negligible.

This is a contradiction to the security of the PRF.