Introduction to Cryptology

Lecture 11

Announcements

- HW5 up on course webpage, due 3/8
- Midterm: coming up on $3 / 10$
- Canvas survey to determine review session held by Mukul. Please vote.

Agenda

- Last time:
- Block Ciphers (3.5)
- Modes of Operation (3.6)
- Started MAC (4.2)
- This time:
- Security Definition for MAC (4.2)
- Constructing MAC from PRF
- Class Exercise

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^{n} and outputs a key k with $|k| \geq n$.
2. The tag-generation algorithm Mac takes as input a key k and a message $m \in\{0,1\}^{*}$, and outputs a tag t. $t \leftarrow M a c_{k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit b with $b=1$ meaning valid and $b=0$ meaning invalid. $b:=\operatorname{Vrf} y_{k}(m, t)$.
It is required that for every n, every key k output by $\operatorname{Gen}\left(1^{n}\right)$, and every $m \in\{0,1\}^{*}$, it holds that $\operatorname{Vrf} y_{k}\left(m, \operatorname{Mac}_{k}(m)\right)=1$.

Security of MACs

The message authentication experiment MACforge $_{A, \Pi}(n)$:

1. A key k is generated by running $\operatorname{Gen}\left(1^{n}\right)$.
2. The adversary A is given input 1^{n} and oracle access to $M a c_{k}(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
3. A succeeds if and only if (1) $\operatorname{Vrf} y_{k}(m, t)=1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1 .

Security of MACs

Definition: A message authentication code $\Pi=($ Gen, Mac,Vrfy $)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$
\operatorname{Pr}\left[\operatorname{MACforge} e_{A, \Pi}(n)=1\right] \leq \operatorname{neg}(n) .
$$

Strong MACs

The strong message authentication experiment MACsforge $_{A, \Pi}(n)$:

1. A key k is generated by running $\operatorname{Gen}\left(1^{n}\right)$.
2. The adversary A is given input 1^{n} and oracle access to $M a c_{k}(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
3. A succeeds if and only if (1) $\operatorname{Vrf} y_{k}(m, t)=1$ and $(2)(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1 .

Strong MACs

Definition: A message authentication code $\Pi=($ Gen, Mac,Vrfy) is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$
\operatorname{Pr}\left[\operatorname{MACsforge} e_{A, \Pi}(n)=1\right] \leq \operatorname{neg}(n) .
$$

Constructing Secure Message Authentication Codes

A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- Mac: on input a key $k \in\{0,1\}^{n}$ and a message $m \in\{0,1\}^{n}$, output the tag $t:=F_{k}(m)$.
- Vrfy: on input a key $k \in\{0,1\}^{n}$, a message $m \in\{0,1\}^{n}$, and a tag $t \in\{0,1\}^{n}$, output 1 if and only if $t=F_{k}(m)$.

Security Analysis

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.

Security Analysis

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D :
D gets oracle access to oracle O, which is either F_{k}, where F is pseudorandom or f which is truly random.

1. Instantiate $A^{\text {acc }_{k}(\cdot)}\left(1^{n}\right)$.
2. When A queries its oracle with message m, output $O(m)$.
3. Eventually, A outputs (m^{*}, t^{*}) where $m^{*}, t^{*} \in\{0,1\}^{n}$.
4. If $m^{*} \in Q$, output 0 .
5. If $m^{*} \notin Q$, query $O\left(m^{*}\right)$ to obtain output z^{*}.
6. If $t^{*}=z^{*}$ output 1 . Otherwise, output 0 .

Security Analysis

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_{k}.

- When O is pseudorandom, D outputs 1 with probability $\operatorname{Pr}\left[\operatorname{MACforg} e_{A, \Pi}(n)=1\right]=$ $\rho(n)$, where ρ is non-negligible.
- When O is random, D outputs 1 with probability at most $\frac{1}{2^{n}}$. Why?

Security Analysis

D's distinguishing probability is:

$$
\left|\frac{1}{2^{n}}-\rho(n)\right|=\rho(n)-\frac{1}{2^{n}} .
$$

Since, $\frac{1}{2^{n}}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n)-\frac{1}{2^{n}}$ is non-negligible.
This is a contradiction to the security of the PRF.

