Introduction to Cryptology

Lecture 10
Announcements

• HW4 due today
• HW5 up on course webpage, due 3/8
 – Canvas Discussion set up
• Midterm: coming up on 3/10
 – Canvas survey to determine review session held by Mukul
Agenda

• Last time:
 – CPA-secure encryption from PRF (Sec. 3.5)

• This time:
 – PRP (Block Ciphers) (3.5)
 – Modes of operation (3.6)
 – New topic:
 • Message Authentication Codes (MAC) (4.2)
 • Constructing MAC from PRF (4.3)
Block Ciphers/Pseudorandom Permutations

Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F_k must be a permutation and it must be indistinguishable from a random permutation.
Strong Pseudorandom Permutation

Definition: Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be an efficient, length-preserving, keyed permutation. We say that F is a strong pseudorandom permutation if for all ppt distinguishers D, there exists a negligible function $negl$ such that:

$$\Pr[D^{F_k(\cdot),F^{-1}_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1] \leq negl(n).$$

where $k \leftarrow \{0,1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of all permutations mapping n-bit strings to n-bit strings.
Modes of Operation—Stream Cipher

If sender and receiver are willing to maintain state, can encrypt multiple messages.
Modes of Operation—Block Cipher

FIGURE 3.5: Electronic Code Book (ECB) mode.

FIGURE 3.6: An illustration of the dangers of using ECB mode. The middle figure is an encryption of the image on the left using ECB mode; the figure on the right is an encryption of the same image using a secure mode.

FIGURE 3.7: Cipher Block Chaining (CBC) mode.
Modes of Operation—Block Cipher

FIGURE 3.9: Output Feedback (OFB) mode.

FIGURE 3.10: Counter (CTR) mode.
Message Integrity

- Secrecy vs. Integrity

- Encryption vs. Message Authentication
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms $(Gen, Mac, Vrfy)$ such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \geq n$.
2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t.

 $t \leftarrow Mac_k(m)$.

3. The deterministic verification algorithm $Vrfy$ takes as input a key k, a message m, and a tag t. It outputs a bit b with $b = 1$ meaning valid and $b = 0$ meaning invalid.

 $b := Vrfy_k(m, t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.