
Introduction to Cryptology ENEE459E/CMSC498R: Final Review Sheet

1 Overview

The final exam will be held on Monday, 5/18/15 from 10:30am-12:30pm in ITV 1100 (our regular class-
room). It is not cumulative. It is closed book and notes. No calculator, cell phone or mobile devices.

2 Sections Covered

The exam will cover the following Sections from the textbook:

– Chapter 4: 4.1, 4.2, 4.3, 4.4, 4.5
– Chapter 5: 5.1, 5.2, 5.3
– Chapter 6: 6.2, 6.3
– Chapter 8: 8.1, 8.2, 8.3
– Chapter 10: 10.3
– Chapter 11: 11.2, 11.4, 11.5
– Chapter 12: 12.2, 12.4, 12.5, 12.7, 12.8

The following is a list of general topics focused on in the final exam and several practice problems for
each topic.

3 Practice Problems

3.1 Message Authentication Codes and Collision-Resistant Hash Functions

1. We explore what happens when the basic CBC-MAC construction is used with messages of different
lengths.

(a) Say the sender and receiver do not agree on the message length in advance, but the sender is careful
to only authenticate messages of length 2n. Show that an adversary can forge a valid tag on a mes-
sage of length 4n.

(b) Say the receiver only accepts 3-block messages, but the sender authenticates messages of any length
a multiple of n. Show that an adversary can forge a valid tag on a new message.

2. Assume collision-resistant hash functions exist. Show a construction of a fixed-length hash function
(Gen, h) that is not collision resistant, but such that the hash function (Gen, H) obtained from the
Merkle-Damgard transform to (Gen, h) is collision resistant.
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3.2 Practical Constructions of Symmetric Key Primitives

1. Assume an SPN with block length 128. Moreover, assume there is no permutation step—only substi-
tuion steps and assume the same key schedule as our example in class (i.e. for an n-round network,
k = k1, . . . , kn and the i-th part of the key is used in round i). How many round substitution network
can you recover the entire key for in time 240.

2. Feistel network.

(a) Consider a 1-round Feistel network where the round function is a PRF Fk(·). Is the function com-
puted by the Feistel network a PRP?

(b) Consider a 2-round Feistel network where the round function is a PRF Fk(·). Is the function com-
puted by the Feistel network a PRP?

3.3 Number Theory

1. Let N = p · q, for primes p, q. Assume m ∈ ZN \Z∗
N . Let e, d be such that e · d ≡ 1 mod φ(N). What

happens when we compute (me)d mod N?

Hint: Recall that φ(N) = (p− 1)(q − 1) and consider what happens when we compute (me)d mod p
and (me)d mod q.

2. Recall that the discrete logarithm problem is believed to be hard relative to the cyclic group Z∗
p , for

prime p. Let g be a generator of Z∗
p . Nevertheless, show that, given gx, it is possible to determine the

least significant bit of x.

3. The Euclidean Algorithm can also be used to find the gcd of two polynomials. Use the Euclidean Algo-
rithm to find the gcd of the polynomials p1(x) = 3x4 +3x3− 17x2 +x− 6 and p2(x) = 3x2− 5x− 2.
Show your work.

3.4 Key Exchange and Public Key Encryption

1. Consider the following key-exchange protocol: Common input: The security parameter 1n. The protocol:
(a) Alice runs G(1n) to obtain (G, q, g).
(b) Alice chooses x1, x2 ← Zq and sends h1 = gx1+x2 to Bob.
(c) Bob chooses x3 ← Zq and sends h2 = gx3 to Alice.
(d) Alice outputs hx1+x22 . Bob outputs hx31 .
Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e. either prove its
security or show a concrete attack).

2. Let (N, e) be the public key for plain RSA, where N = 3 · 11 = 33 and e = 3. Find the corresponding
secret key (N, d). Then encrypt the message m = 16, obtaining some ciphertext c. Decrypt c to recover
m. Do the computations by hand and show your work.
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3. Consider the subgroup of Z∗
23 consisting of quadratic residues modulo 23. This group consists of the

following elements: {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. We choose g = 3 to be the generator of the sub-
group. Let (23, 11, 3, x = 4) be the secret key for ElGamal. Find the corresponding public key. Then
encrypt the message m = 9, obtaining some ciphertext c. Decrypt c to recover m. Do the computations
by hand and show your work.

4. Let PK1 = (N1, 3), PK2 = (N2, 3), PK3 = (N3, 3), where N1 = 51, N2 = 65, N3 = 77, e = 3. Assume
a sender used plain RSA encryption to encrypt the same message m under public keys PK1, PK2, PK3

to yield ciphertexts c1 = 2, c2 = 57, c3 = 50. Find the message m by using the Chinese Remainder
Theorem and solving form. (See here for information on the Chinese Remainder Theorem http://en.

wikipedia.org/wiki/Chinese_remainder_theorem#A_constructive_algorithm_to_find_the_

solution).

3.5 Digital Signatures

1. Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to
encode the message before applying the RSA permutation. Here the signer fixes a public encoding func-
tion enc : {0, 1}` → Z∗

N as part of its public key, and the signature on a message m is σ := [enc(m)d

mod N ].

(a) Show that encoded RSA is insecure if enc(m) = 0x00||m||0κ/10 (where κ = ||N ||, ` = |m| =
4κ/5, and m is not the all-0 message). Assume e = 3.

(b) Show that encoded RSA is insecure for enc(m) = 0||m||0||m (where ` = |m| = (||N || − 1)/2 and
m is not the all-0 message). Assume e = 3.
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