1. Exercise 4.14

2. Exercise 4.17

3. Exercise 5.2

4. Exercise 5.5

5. Number theory practice problems:
 (a) Compute $3^{1000} \mod 100$ by hand.

 (b) Compute $[101^{4,800,000,023} \mod 35]$ by hand.

 (c) Let $N = pq$ be a product of two distinct primes. Show that if $\phi(N)$ and N are known, then it is possible to compute p and q in polynomial time.

 $Hint$: Derive a quadratic equation (over the integers) in the unknown p.

 (d) Let $N = pq$ be a product of two distinct primes. Show that if N and an integer d such that $3 \cdot d \equiv 1 \mod \phi(N)$ are known, then it is possible to compute p and q in polynomial time.

 $Hint$: Obtain a small list of possibilities for $\phi(N)$ and then use the previous exercise.