Cryptography Lecture 22

Announcements

- HW5 due on $4 / 24$ at11:59pm
- HW6 posted, due on $5 / 8$ at $11: 59$ pm
- No lecture (or quizzes) on $4 / 24$ and $4 / 29$
- Please watch videos linked in the Canvas announcement

Agenda

- Last time:
- Diffie-Hellman Key Exchange
- Public Key Encryption
- EIGamal (11.5)
- This time:
- Digital Signatures Definitions (13.2)
- DL-Based Signatures (13.5)

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen,Sign,Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1^{n} and outputs a pair of keys ($p k, s k$). We assume that $p k$, $s k$ each have length at least n, and that n can be determined from $p k$ or $s k$.
2. The signing algorithm Sign takes as input a private key $s k$ and a message m from some message space (that may depend on $p k$). It outputs a signature σ, and we write this as $\sigma \leftarrow S i g n_{s k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a public key $p k$, a message m, and a signature σ. It outputs a bit b, with $b=1$ meaning valid and $b=0$ meaning invalid. We write this as $b:=\operatorname{Vrfy} y_{p k}(m, \sigma)$.
Correctness: It is required that except with negligible probability over $(p k, s k)$ output by $\operatorname{Gen}\left(1^{n}\right)$, it holds that $\operatorname{Vrf} y_{p k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1$ for every message m.

Digital Signatures Definition: Security

Experiment SigForge $e_{A, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary A is given $p k$ and access to an oracle $\operatorname{Sign} n_{s k}(\cdot)$. The adversary then outputs (m, σ). Let Q denote the set of all queries that A asked to its oracle.
3. A succeeds if and only if
4. $\operatorname{Vrfy_{pk}}(m, \sigma)=1$
5. $m \notin Q$.

In this case the output of the experiment is defined to be 1 .
Definition: A signature scheme $\Pi=($ Gen, Sign, Vrfy) is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$
\operatorname{Pr}\left[\operatorname{SigForge} e_{A, P i}(n)=1\right] \leq \operatorname{neg}(n)
$$

Overview of DL-based Signatures

- Discrete-Log-based signatures can be implemented using Elliptic Curves.
- They are therefore more efficient than RSA-based signatures (signatures are far smaller).
- DL-based are preferred in Bitcoin
- Bitcoin currently uses ECDSA = Elliptic Curve Digital Signature Algorithm
- We will be learning about Schnorr signatures.
- Similar to ECDSA but have some better properties.
- Many proponents of switching Bitcoin signatures to Schnorr signatures. Implemented in Bitcoin in November 2021 within the Taproot upgrade as an alternative to the Elliptic Curve Digital Signature Algorithm (ECDSA)

Outline

- We will first construct an Identification Scheme
- A way to prove knowledge of a secret key corresponding to a public key without revealing the secret key
- Provides a form of "zero knowledge"
- E.g. public key $=g^{\wedge} x$, secret key $=x$.
- Prove that I know x, without revealing what x is
- If I reveal x, someone can impersonate me next time.
- Use the Fiat-Shamir transform to convert an Identification Scheme into a Signature Scheme.

Identification Schemes

FIGURE 12.1: A 3-round identification scheme.

Identification Schemes

The identification experiment $\operatorname{Ident}_{\mathcal{A}, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary \mathcal{A} is given $p k$ and access to an oracle $\operatorname{Trans}_{s k}(\cdot)$ that it can query as often as it likes.
3. At any point during the experiment, \mathcal{A} outputs a message I. A uniform challenge $r \in \Omega_{p k}$ is chosen and given to \mathcal{A}, who responds with s. (We allow \mathcal{A} to continue querying $\operatorname{Trans}_{s k}(\cdot)$ even after receiving c.)
4. The experiment evaluates to 1 if and only if $\mathcal{V}(p k, r, s) \stackrel{?}{=} I$.

DEFINITION 12.8 Identification scheme $\Pi=\left(\operatorname{Gen}, \mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{V}\right)$ is secure against a passive attack, or just secure, if for all probabilistic polynomial-time adversaries \mathcal{A}, there is a negligible function negl such that:

$$
\operatorname{Pr}\left[\mid \operatorname{dent}_{\mathcal{A}, \Pi}(n)=1\right] \leq \operatorname{neg} \mid(n) .
$$

The Schnorr Identification Scheme

FIGURE 12.2: An execution of the Schnorr identification scheme.

Security Analysis

Theorem: If the Dlog problem is hard relative to G then the Schnorr identification scheme is
secure.

Security Analysis

Idea of proof:

- Oracle can generate correctly distributed transcripts without knowing x.
- How?

Security Analysis

Idea of proof:

- Given an attacker A who successfully responds to challenges with non-negligible probability, can construct an attacker A^{\prime} who extracts the discrete $\log x$ of y by ${ }^{* *}$ rewinding**.

From Identification Schemes to Signatures: The Fiat-Shamir Transform

CONSTRUCTION 12.9

Let (Gen, $\left.\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{V}\right)$ be an identification scheme, and construct a signature scheme as follows:

- Gen: on input 1^{n}, simply run Gen $\left(1^{n}\right)$ to obtain keys $p k, s k$. The public key $p k$ specifies a set of challenges $\Omega_{p k}$. As part of key generation, a function $H:\{0,1\}^{*} \rightarrow \Omega_{p k}$ is specified, but we leave this implicit.
- Sign: on input a private key $s k$ and a message $m \in\{0,1\}^{*}$, do:

1. Compute $(I, \mathrm{st}) \leftarrow \mathcal{P}_{1}(s k)$.
2. Compute $r:=H(I, m)$.
3. Compute $s:=\mathcal{P}_{2}(s k, \mathrm{st}, c)$

Output the signature (r, s).

- Vrfy: on input a public key $p k$, a message m, and a signature (r, s), compute $I:=\mathcal{V}(p k, r, s)$ and output 1 if and only if $H(I, m) \stackrel{?}{=} r$.

The Fiat-Shamir transform.

Security Analysis

Theorem: Let Π be an identification scheme, and let Π^{\prime} be the signature scheme that results by applying the Fiat-Shamir transform to it. If Π is secure and H is modeled as a random oracle, then Π^{\prime} is secure.

The Schnorr Signature Scheme

CONSTRUCTION 12.12
Let \mathcal{G} be as described in the text.

- Gen: run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g). Choose uniform $x \in \mathbb{Z}_{q}$ and set $y:=g^{x}$. The private key is x and the public key is (\mathbb{G}, q, g, y). As part of key generation, a function $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ is specified, but we leave this implicit.
- Sign: on input a private key x and a message $m \in\{0,1\}^{*}$, choose uniform $k \in \mathbb{Z}_{q}$ and set $I:=g^{k}$. Then compute $r:=H(I, m)$, followed by $s:=[r x+K \bmod q]$. Output the signature (r, s).
- Vrfy: on input a public key (\mathbb{G}, q, g, y), a message m, and a signature (r, s), compute $I:=g^{s} \cdot y^{-r}$ and output 1 if $H(I, m) \stackrel{?}{\stackrel{?}{r}} r$.

The Schnorr signature scheme.

