Cryptography

Lecture 23



Announcements

* HW5 due on Wednesday, 4/24



Agenda

* Last time:
— Cyclic groups
* This time:
— More on Cyclic Groups

— Hard problems (Discrete log, Diffie-
Hellman Problems—CDH, DDH)

— Elliptic Curve Groups



Cyclic Groups

For a finite group G of order mand g € G,
consider:

(9)=19"g" ..g™ "}
(g) always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the
above list.

Thus (g) may be a subgroup of order smaller than
m

If (g) = G, then we say that G is a cyclic group and
that g is a generator of G.



Consider Z 13"

2 is a generator of Z~ )

20 1
21 2
22 4
23 8
24 16 - 3
2° 6
26 12
27 | 24> 11
28 22 -9
2° | 1855
210 10
211 [ 20> 7
212 | 1451

3"

Examples

3 is not a generator of Z* 1

30 1
31 3
32 9
33 | 271
3% 3
35 9
3¢ | 271
37 3
38 9
32 | 271
310 3
311 9
312 | 271

3"



Definitions and Theorems

Definition: Let G be a finite group and g € G. The order
of g is the smallest positive integer i such that g* = 1.

Ex: Consider Z;5. The order of 2 is 12. The order
of 3 is 3.

Proposition 1: Let (¢ be a finite group and g € G an

element of order i. Then for any integer x, we have g* =
gx mod L

Proposition 2: Let (¢ be a finite group and g € G an
element of order i. Then g* = g” iff x = y mod 1.






More Theorems

Proposition 3: Let G be a finite group of order m and g € G an element of
order i. Theni |m.

Proof:
0

* We know by the generalized theorem of last class that g™ =1 = g°.

* By Propesition 2, we have that 0 = m mod i
* By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of
G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z* . is a cyclic group of order p — 1.



Prime-Order Cyclic Groups

Consider Z~ " where p is a strong prime.

* Strong prime: p = 2q + 1, where g is also
prime.

 Recall that Z* . iIs a cyclic group of order p —
1 = 2q.

The subgroup of quadratic residues in Z~ . IS a
cyclic group of prime order q.



Example of Prime-Order Cyclic Group

Consider Z 11"

Note that 11 is a strong prime, since 11 =2 -5 + 1.

g = 2isageneratorof Z* _:

20 1 The even powers of g are the “quadratic residues” (i.e. the perfect
71 2 squares). Exactly half the elements of Z~ ,are qguadratic residues.
22 4
. -1
23 8 Note that the even powers of g form a cyclic subgroup of order pT =
24 | 16 > 5 q.
25 10 '
2° | 20-9 verity: . : .
e closure (Multiplication translates into addition in the exponent.
27 | 187 . .
Addition of two even numbers mod p — 2 gives an even number
8 . . .
2 L= 8 mod p — 1, since for primep > 3,p — 1 is even.)
2? 6 e Cyclic —any element is a generator. E.g. it is easy to see that all

even powers of g can be generated by g2.



The Discrete Logarithm Problem

The discrete-log experiment DLog, ¢(n)

1. Run G(1") to obtain (G, g, g) where G is a cyclic group of
order g (with qu‘ = n) and g is a generator of G.

2. Choose auniformh € G

3. Aisgiven G, q, g, h and outputs x € Zq

4. The output of the experiment is defined tobe 1 if g* = h
and 0 otherwise.

Definition: We say that the DL problem is hard relative to G if
for all ppt algorithms A there exists a negligible function neg
such that

Pr[DLogA,G(n) = 1] <neg(n).



The Diffie-Hellman Problems



The CDH Problem

Given (G, q, g) and uniform hy = g*1, h, = g*2,
compute g*1*z,



The DDH Problem

We say that the DDH problem is hard relative to G if
for all ppt algorithms A, there exists a negligible
function neg such that

Pr[A(G,q,9,9% 97, 97) = 1]

— PrlA(G,q,9,9%, 97, 9™) = 1]| < neg(n).






Relative Hardness of the Assumptions

Breaking DLog — Breaking CDH — Breaking DDH

DDH Assumption —» CDH Assumption — DLog
Assumption



(Finite) Fields:

e A (finite) set of elements that can be viewed as a
group with respect to two operations (denoted by
addition and multiplication).

e The identity element for addition (0) is not required
to have a multiplicative inverse.

e Example: Z p, for prime p: {0, ..., p-1}

o Z pisagroup with respect to addition mod p
o Z* p (taking out 0) is a group with respect to
multiplication mod p

e \We can now consider *polynomials* over Z_p as
polynomials consist of only multiplication and
addition.



Elliptic Curves over Finite Fields

* Zpis afinite field for prime p.
* Letp =5 beaprime
* Consider equation E in variables x, y of the form:
y? :=x3+ Ax + Bmod p
Where A, B are constants such that 443 + 27B?% # 0.
(this ensures that x3 + Ax + B mod p has no repeated roots).

Let E(Zp) denote the set of pairs (x,y) € Zp X Z) satisfying the
above equation as well as a special value 0.

E(Zp) = {(x, V)|x,y € Z, and y* = x> + Ax + B mod p} U {0}

The elements E(Zp) are called the points on the Elliptic Curve E
and O is called the point at infinity.



Elliptic Curves over Finite Fields

Example:

Quadratic Residues over Z-.
02=0,12=1,22=4,32=9=12,4%> =16 = 2,5°
=25=4,6%=36=1.

f(x):==x34+3x +3andcurve E: y? = f(x) mod 7.

* Each value of x for which f(x) is a non-zero quadratic
residue mod 7 yields 2 points on the curve

* Values of x for which f (x) is a non-quadratic residue
are not on the curve.

* Values of x for which f(x) = 0 mod 7 give one point
on the curve.






Elliptic Curves over Finite Fields

f(0) =3mod7 a quadratic non-residue mod 7
f(1) =0mod 7 so we obtain the point (1,0) € E(Z,)
f(2) =3mod7 a quadratic non-residue mod 7
f(3)=4mod7 a quadratic residue with roots 2,5.
so we obtain the points (3,2), (3,5) €
E(Z7)
f(4) =2mod7 a quadratic residue with roots 3,4.
so we obtain the points (4,3), (4,4) €
E(Z7)
f(5) =3mod7 a quadratic non-residue mod 7

f(6) =6mod7

a quadratic non-residue mod 7




Elliptic Curves over Finite Fields
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FIGURE 8.2: An elliptic curve over the reals.

Point at infinity: O sits at the top of the y-axis and lies on every vertical
line.

Every line intersecting E(Zp) in 2 points, intersects it in exactly 3 points:

1. A point P is counted 2 times if line is tangent to the curve at P.
2. The point at infinity is also counted when the line is vertical.






Addition over Elliptic Curves

Binary operation “addition” denoted by 4+ on points of

E(Z,).

 The point O is defined to be an additive identity for all
P EE(Zp)wedefineP+0 =0+ P =P.

* For 2 points Py, P, # O on E, we evaluate their sum
P; + P, by drawing the line through P, P, (If P, = P,,
draw the line tangent to the curve at P;) and finding
the 3™ point of intersection P; of this line with E(Z),).

* The 3" point may be P; = O if the line is vertical.

e If P; = (x,y) # O then we define P, + P, = (x, —y).

* If P; = O then we define P; + P, = 0.



Additive Inverse over Elliptic Curves

e If P = (x,y) # O is a point ofE(Zp) then
— P = (x, —y) which is clearly also a point on
E(Z,).

* The line through (x,y), (x, —y) is vertical and
so addition implies that P + (—P) = 0.

e Additionally, —0 = 0.



Groups over Elliptic Curves

Proposition: Let p > 5 be prime and let E be the elliptic curve given by y? = x3 +
Ax + B mod p where 443 + 27B% # 0 mod p.

Let P;, P, # O be points on E with P; = (x1,y;) and P, = (x5, y,).

1. Ifxy # x, then P; + P, = (x3,y3) with
x3 = [m* — x; — x, mod pl,y3 = [m — (x4 — x3) — y; mod p]
Where m = [u mod p].

X2—X1
2. |fx1=x2buty1¢y2thenP1=—PzandSOP1+P2=0.
3. |fP1=Pzandy1=0thenP1+P2=2P1=0.
4, |fP1=Pzandy1¢0thenP1+P2=2P1=(x3,y3)with

X3 = [m2 — 2x, mod p],y3 = [m — (x; — x3) —y; mod p]

2
+A

Y1

Where m = lsx; mod p].

The set E(Zp) along with the addition rule form an abelian group.
The elliptic curve group of E.

**Difficult property to verify is associativity. Can check through tedious calculation.



DDH over Elliptic Curves

DDH: Distinguish (aP, bP,abP) from
(aP,bP,cP).



Size of Elliptic Curve Groups?

How large are EC groups mod p?

Heuristic: y% = f(x) has 2 solutions whenever f(x) is a
quadratic residue and 1 solution when f(x) = 0.

Since half the elements of Z{; are quadratic residues,

expect 2(p—1) + 1 = p points on curve. Including O, this

gives p + 1 points.

Theorem (Hasse bound): Let p be prime, and let E be an
elliptic curve over Z,,. Then

p+1-2yp<|E(Z,)|<p+1+2yp



Public Key Cryptography






Key Agreement

The key-exchange experiment KEeavA q ()

1. Two parties holding 1™ execute protocol I1. This results in a transcript
trans containing all the messages sent by the parties, and a key k
output by each of the parties.

2. Auniform bit b € {0,1} is chosen. If b = 0 set k :== k, and if b = 1 then
choose k € {0,1}" uniformly at random.

Ais given trans and k, and outputs a bit b’.

The output of the experiment is definedto be 1 if b* = b and 0
otherwise.

B W

Definition: A key-exchange protocol Il is secure in the presence of an
eavesdropper if for all ppt adversaries A there is a negligible function neg
such that

Pr [KEeavAn(n) = 1] —+ neg(n).





