Cryptography

Lecture 23

Announcements

- HW5 due on Wednesday, 4/24

Agenda

- Last time:
- Cyclic groups
- This time:
- More on Cyclic Groups
- Hard problems (Discrete log, DiffieHellman Problems-CDH, DDH)
- Elliptic Curve Groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$
\langle g\rangle=\left\{g^{0}, g^{1}, \ldots, g^{m-1}\right\}
$$

$\langle g\rangle$ always forms a cyclic subgroup of G. However, it is possible that there are repeats in the above list.
Thus $\langle g\rangle$ may be a subgroup of order smaller than m.

If $\langle g\rangle=G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider $Z^{*}{ }_{13}$:

2 is a generator of $Z^{*}{ }_{13}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 3$
2^{5}	6
2^{6}	12
2^{7}	$24 \rightarrow 11$
2^{8}	$22 \rightarrow 9$
2^{9}	$18 \rightarrow 5$
2^{10}	10
2^{11}	$20 \rightarrow 7$
2^{12}	$14 \rightarrow 1$

3 is not a generator of $Z^{*}{ }_{13}$:

3^{0}	1
3^{1}	3
3^{2}	9
3^{3}	$27 \rightarrow 1$
3^{4}	3
3^{5}	9
3^{6}	$27 \rightarrow 1$
3^{7}	3
3^{8}	9
3^{9}	$27 \rightarrow 1$
3^{10}	3
3^{11}	9
3^{12}	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^{i}=1$.

Ex: Consider Z_{13}^{*}. The order of 2 is 12 . The order of 3 is 3 .

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^{x}=$ $g^{x \bmod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^{x}=g^{y}$ iff $x \equiv y \bmod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^{m}=1=g^{0}$.
- By Propesition 2, we have that $0 \equiv m \bmod i$
- By definition of modulus, this means that $i \mid m$.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?
Theorem: If p is prime then $Z^{*}{ }_{p}$ is a cyclic group of order $p-1$.

Prime-Order Cyclic Groups

Consider $Z^{*}{ }_{p}$, where p is a strong prime.

- Strong prime: $p=2 q+1$, where q is also prime.
- Recall that $Z^{*}{ }_{p}$ is a cyclic group of order $p-$ $1=2 q$.

The subgroup of quadratic residues in $Z^{*}{ }_{p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^{*}
11°
Note that 11 is a strong prime, since $11=2 \cdot 5+1$. $g=2$ is a generator of $Z^{*}{ }_{11}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 5$
2^{5}	10
2^{6}	$20 \rightarrow 9$
2^{7}	$18 \rightarrow 7$
2^{8}	$14 \rightarrow 3$
2^{9}	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^{*}{ }_{p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}=$ q.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod $p-2$ gives an even number $\bmod p-1$, since for prime $p>3, p-1$ is even.)
- Cyclic -any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^{2}.

The Discrete Logarithm Problem

The discrete-log experiment $D \log _{A, G}(n)$

1. Run $\boldsymbol{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $|\mid q \|=n$) and g is a generator of G.
2. Choose a uniform $h \in G$
3. A is given G, q, g, h and outputs $x \in Z_{q}$
4. The output of the experiment is defined to be 1 if $g^{x}=h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[D \log _{A, \boldsymbol{G}}(n)=1\right] \leq \operatorname{neg}(n) .
$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$, compute $g^{x_{1} \cdot x_{2}}$.

The DDH Problem

We say that the DDH problem is hard relative to \boldsymbol{G} if for all ppt algorithms A, there exists a negligible
function neg such that

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right] \\
& -\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \mid \leq \operatorname{neg}(n) .
\end{aligned}
$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption
(Finite) Fields:

- A (finite) set of elements that can be viewed as a group with respect to two operations (denoted by addition and multiplication).
- The identity element for addition (0) is not required to have a multiplicative inverse.
- Example: Z_p, for prime p: $\{0, \ldots, p-1\}$
- Z_p is a group with respect to addition mod p
- Z*_p (taking out 0) is a group with respect to multiplication mod p
- We can now consider *polynomials* over Z_p as polynomials consist of only multiplication and addition.

Elliptic Curves over Finite Fields

- Z_{p} is a finite field for prime p.
- Let $p \geq 5$ be a prime
- Consider equation E in variables x, y of the form:

$$
y^{2}:=x^{3}+A x+B \bmod p
$$

Where A, B are constants such that $4 A^{3}+27 B^{2} \neq 0$. (this ensures that $x^{3}+A x+B \bmod p$ has no repeated roots). Let $E\left(Z_{p}\right)$ denote the set of pairs $(x, y) \in Z_{p} \times Z_{p}$ satisfying the above equation as well as a special value O.
$E\left(Z_{p}\right):=\left\{(x, y) \mid x, y \in Z_{p}\right.$ and $\left.y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{0\}$
The elements $E\left(Z_{p}\right)$ are called the points on the Elliptic Curve E and O is called the point at infinity.

Elliptic Curves over Finite Fields

Example:
Quadratic Residues over Z_{7}.

$$
\begin{aligned}
& 0^{2}=0,1^{2}=1,2^{2}=4,3^{2}=9=2,4^{2}=16=2,5^{2} \\
& =25=4,6^{2}=36=1
\end{aligned}
$$

$f(x):=x^{3}+3 x+3$ and curve $E: y^{2}=f(x) \bmod 7$.

- Each value of x for which $f(x)$ is a non-zero quadratic residue mod 7 yields 2 points on the curve
- Values of x for which $f(x)$ is a non-quadratic residue are not on the curve.
- Values of x for which $f(x) \equiv 0 \bmod 7$ give one point on the curve.

Elliptic Curves over Finite Fields

$f(0) \equiv 3 \bmod 7$	a quadratic non-residue $\bmod 7$
$f(1) \equiv 0 \bmod 7$	so we obtain the point $(1,0) \in E\left(Z_{7}\right)$
$f(2) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(3) \equiv 4 \bmod 7$	a quadratic residue with roots $2,5$. so we obtain the points $(3,2),(3,5) \in$ $E\left(Z_{7}\right)$
$f(4) \equiv 2 \bmod 7$	a quadratic residue with roots $3,4$. so we obtain the points $(4,3),(4,4) \in$ $E\left(Z_{7}\right)$
$f(5) \equiv 3 \bmod 7$	a quadratic non-residue $\bmod 7$
$f(6) \equiv 6 \bmod 7$	a quadratic non-residue $\bmod 7$

Elliptic Curves over Finite Fields

FIGURE 8.2: An elliptic curve over the reals.
Point at infinity: O sits at the top of the y-axis and lies on every vertical line.

Every line intersecting $E\left(Z_{p}\right)$ in 2 points, intersects it in exactly 3 points:

1. A point P is counted 2 times if line is tangent to the curve at P.
2. The point at infinity is also counted when the line is vertical.

Addition over Elliptic Curves

Binary operation "addition" denoted by + on points of $E\left(Z_{p}\right)$.

- The point O is defined to be an additive identity for all $P \in E\left(Z_{p}\right)$ we define $P+O=O+P=P$.
- For 2 points $P_{1}, P_{2} \neq 0$ on E, we evaluate their sum $P_{1}+P_{2}$ by drawing the line through P_{1}, P_{2} (If $P_{1}=P_{2}$, draw the line tangent to the curve at P_{1}) and finding the $3^{\text {rd }}$ point of intersection P_{3} of this line with $E\left(Z_{p}\right)$.
- The $3^{\text {rd }}$ point may be $P_{3}=0$ if the line is vertical.
- If $P_{3}=(x, y) \neq 0$ then we define $P_{1}+P_{2}=(x,-y)$.
- If $P_{3}=O$ then we define $P_{1}+P_{2}=O$.

Additive Inverse over Elliptic Curves

- If $P=(x, y) \neq 0$ is a point of $E\left(Z_{p}\right)$ then $-P=(x,-y)$ which is clearly also a point on $E\left(Z_{p}\right)$.
- The line through $(x, y),(x,-y)$ is vertical and so addition implies that $P+(-P)=0$.
- Additionally, $-0=0$.

Groups over Elliptic Curves

Proposition: Let $p \geq 5$ be prime and let E be the elliptic curve given by $y^{2}=x^{3}+$ $A x+B \bmod p$ where $4 A^{3}+27 B^{2} \neq 0 \bmod p$.

Let $P_{1}, P_{2} \neq O$ be points on E with $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$.

1. If $x_{1} \neq x_{2}$ then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ with

$$
x_{3}=\left[m^{2}-x_{1}-x_{2} \bmod p\right], y_{3}=\left[m-\left(x_{1}-x_{3}\right)-y_{1} \bmod p\right]
$$

Where $m=\left[\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \bmod p\right]$.
2. If $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$ then $P_{1}=-P_{2}$ and so $P_{1}+P_{2}=O$.
3. If $P_{1}=P_{2}$ and $y_{1}=0$ then $P_{1}+P_{2}=2 P_{1}=0$.
4. If $P_{1}=P_{2}$ and $y_{1} \neq 0$ then $P_{1}+P_{2}=2 P_{1}=\left(x_{3}, y_{3}\right)$ with

$$
x_{3}=\left[m^{2}-2 x_{1} \bmod p\right], y_{3}=\left[m-\left(x_{1}-x_{3}\right)-y_{1} \bmod p\right]
$$

Where $m=\left[\frac{3 x_{1}{ }^{2}+A}{2 y_{1}} \bmod p\right]$.
The set $E\left(Z_{p}\right)$ along with the addition rule form an abelian group.
The elliptic curve group of E.
**Difficult property to verify is associativity. Can check through tedious calculation.

DDH over Elliptic Curves

DDH: Distinguish ($a P, b P, a b P$) from
($a P, b P, c P$).

Size of Elliptic Curve Groups?

How large are EC groups mod p ?
Heuristic: $y^{2}=f(x)$ has 2 solutions whenever $f(x)$ is a quadratic residue and 1 solution when $f(x)=0$.
Since half the elements of Z_{p}^{*} are quadratic residues,
expect $\frac{2(p-1)}{2}+1=p$ points on curve. Including O, this gives $p+1$ points.

Theorem (Hasse bound): Let p be prime, and let E be an elliptic curve over Z_{p}. Then

$$
p+1-2 \sqrt{p} \leq\left|E\left(Z_{p}\right)\right| \leq p+1+2 \sqrt{p}
$$

Public Key Cryptography

Key Agreement

The key-exchange experiment $K E_{A, \Pi}^{e a v}(n)$:

1. Two parties holding 1^{n} execute protocol Π. This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.
2. A uniform bit $b \in\{0,1\}$ is chosen. If $b=0$ set $\hat{k}:=k$, and if $b=1$ then choose $\hat{k} \in\{0,1\}^{n}$ uniformly at random.
3. A is given trans and \hat{k}, and outputs a bit b^{\prime}.
4. The output of the experiment is defined to be 1 if $b^{\prime}=b$ and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$
\operatorname{Pr}\left[K E_{A, \Pi}^{e a v}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

