Cryptography

Lecture 18



Announcements

 HW 4 due 4/10



Agenda

* Last time:
— Number theory

* This time:
— More number theory (cyclic groups)

— Hard problems (Discrete log and Diffie-Hellman
problems)

— Elliptic Curve groups



Multiplicative Groups Mod N

What about multiplicative groups modulo N, where N
IS composite?

Which numbers {1, ..., N — 1} have multiplicative
inverses mod N?

— a such that gcd(a, N) = 1 has multiplicative inverse by
Extended Euclidean Algorithm.

— a such that gcd(a, N) > 1 does not, since gcd(a, N) is the

smallest positive integer that can be written in the form
Xa + YN forinteger X,Y.

Define Zy == {a € {1,...,N — 1}| gcd(a,N) = 1}.
Zy is an abelian, multiplicative group.
— Why does closure hold?



Order of Multiplicative Groups Mod N

* What is the order of Zy,?

* This has a name. The order of Z is the
quantity ¢(N), where ¢ is known as the Euler
totient function or Euler phi function.

* Assume N = p - q, where p, q are distinct
primes.
-¢p(N)=N —p—q+1=p-q —p -1+1=
(p —1D(q - D).
— Why?



Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let N = []; pfi where the {p;} are
distinct primes and e¢; = 1. Then

o) = | [ - D).



Another Special Case of Generalized
Theorem

Corollary of generalized theorem:

For a such that gcd(a, N) = 1:
a®®™) =1 mod N.



Another Useful Theorem

Theorem: Let G be a finite group withm = |G| >

1. Then forany g € G and any integer x, we have
gx — gxmod m

Proof: We writex = a-m + b, where a is an
integer and b = x mod m.

. gx — ga-m+b — (gm)a : gb
* By “generalized theorem” we have that
(gm)a,gb — 1a,gb — gb — gxmodm_



An Example:

Compute 3%° mod 35 by hand.

d(35)=¢(5-7)=06B-1)(T7—-1) =24
325 = 325m0d 24 6 35 = 31 mod 35
= 3 mod 35.



Modular Exponentiation



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;

No—the run time is O(m). m can be on the order of N.
This means that the runtime is on the order of O(N),
while to be efficient it must be on the order of O(log N) .



Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(a, m, N) //computes a™ mod N, where m =
My _1My_o - MMy are the bits of m.

Sets:i=a

Settemp =1

Fori=0ton—1
If‘mi =1

Set temp = (temp - s)mod N
Set s := s? mod N
return temp;

This is clearly efficient since the loop runs for n iterations, where n =
log, m.



Modular Exponentiation

Why does it work?

m=Zmi-2i

=0

. n-1_,..-i — oY)
Consider a™ = qZi=o ™2 =[] g™ 2,
In the efficient algorithm:

s values are precomputations of a,zl, for i_:1 0 ton — 1 (thisis the
. ” . l 1=

“repeated squaring” part since a? = (a? )?).

If m; = 1, we multiply in the corresponding s-value.

Ifm; = 0, then a™'2" = a® = 1 and so we skip the multiplication step.



Cyclic Groups

For a finite group G of order mand g € G,
consider:

(9)=19"g" ..g™ "}
(g) always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the
above list.

Thus (g) may be a subgroup of order smaller than
m

If (g) = G, then we say that G is a cyclic group and
that g is a generator of G.



Consider Z 13"

2 is a generator of Z~ )

20 1
21 2
22 4
23 8
24 16 - 3
2° 6
26 12
27 | 24> 11
28 22 -9
2° | 1855
210 10
211 [ 20> 7
212 | 1451

3"

Examples

3 is not a generator of Z* 1

30 1
31 3
32 9
33 | 271
3% 3
35 9
3¢ | 271
37 3
38 9
32 | 271
310 3
311 9
312 | 271

3"



Definitions and Theorems

Definition: Let G be a finite group and g € G. The order
of g is the smallest positive integer i such that g* = 1.

Ex: Consider Z;5. The order of 2 is 12. The order
of 3 is 3.

Proposition 1: Let (¢ be a finite group and g € G an

element of order i. Then for any integer x, we have g* =
gx mod L

Proposition 2: Let (¢ be a finite group and g € G an
element of order i. Then g* = g” iff x = y mod 1.






More Theorems

Proposition 3: Let G be a finite group of order m and g € G an element of
order i. Theni |m.

Proof:
0

* We know by the generalized theorem of last class that g™ =1 = g°.

* By Propesition 2, we have that 0 = m mod i
* By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of
G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z* . is a cyclic group of order p — 1.



Prime-Order Cyclic Groups

Consider Z~ " where p is a strong prime.

* Strong prime: p = 2q + 1, where g is also
prime.

 Recall that Z* . iIs a cyclic group of order p —
1 = 2q.

The subgroup of quadratic residues in Z~ . IS a
cyclic group of prime order q.



Example of Prime-Order Cyclic Group

Consider Z 11"

Note that 11 is a strong prime, since 11 =2 -5 + 1.

g = 2isageneratorof Z* _:

20 1 The even powers of g are the “quadratic residues” (i.e. the perfect
71 2 squares). Exactly half the elements of Z~ ,are qguadratic residues.
22 4
. -1
23 8 Note that the even powers of g form a cyclic subgroup of order pT =
24 | 16 > 5 q.
25 10 '
2° | 20-9 verity: . : .
e closure (Multiplication translates into addition in the exponent.
27 | 187 . .
Addition of two even numbers mod p — 2 gives an even number
8 . . .
2 L= 8 mod p — 1, since for primep > 3,p — 1 is even.)
2? 6 e Cyclic —any element is a generator. E.g. it is easy to see that all

even powers of g can be generated by g2.



The Discrete Logarithm Problem

The discrete-log experiment DLog, ¢(n)

1. Run G(1") to obtain (G, g, g) where G is a cyclic group of
order g (with qu‘ = n) and g is a generator of G.

2. Choose auniformh € G

3. Aisgiven G, q, g, h and outputs x € Zq

4. The output of the experiment is defined tobe 1 if g* = h
and 0 otherwise.

Definition: We say that the DL problem is hard relative to G if
for all ppt algorithms A there exists a negligible function neg
such that

Pr[DLogA,G(n) = 1] <neg(n).



The Diffie-Hellman Problems



The CDH Problem

Given (G, q, g) and uniform hy = g*1, h, = g*2,
compute g*1*z,



The DDH Problem

We say that the DDH problem is hard relative to G if
for all ppt algorithms A, there exists a negligible
function neg such that

Pr[A(G,q,9,9% 97, 97) = 1]

— PrlA(G,q,9,9%, 97, 9™) = 1]| < neg(n).






Relative Hardness of the Assumptions

Breaking DLog — Breaking CDH — Breaking DDH

DDH Assumption —» CDH Assumption — DLog
Assumption





