Cryptography

Lecture 18

Announcements

• HW 4 due 4/10

Agenda

• Last time:

– Number theory

- This time:
 - More number theory (cyclic groups)
 - Hard problems (Discrete log and Diffie-Hellman problems)
 - Elliptic Curve groups

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers {1, ..., N − 1} have multiplicative inverses mod N?
 - a such that gcd(a, N) = 1 has multiplicative inverse by Extended Euclidean Algorithm.
 - a such that gcd(a, N) > 1 does not, since gcd(a, N) is the smallest positive integer that can be written in the form Xa + YN for integer X, Y.
- Define $Z_N^* \coloneqq \{a \in \{1, ..., N-1\} | \gcd(a, N) = 1\}.$
- Z_N^* is an abelian, multiplicative group.
 - Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z_N^* ?
- This has a name. The order of Z_N^* is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.

$$-\phi(N) = N - p - q + 1 = p \cdot q - p - 1 + 1 = (p - 1)(q - 1).$$

- Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let $N = \prod_i p_i^{e_i}$ where the $\{p_i\}$ are distinct primes and $e_i \ge 1$. Then

$$\phi(N) = \prod_{i} p_i^{e_i - 1} (p_i - 1).$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem: For a such that gcd(a, N) = 1: $a^{\phi(N)} \equiv 1 \mod N$.

Another Useful Theorem

Theorem: Let G be a finite group with m = |G| > 1. 1. Then for any $g \in G$ and any integer x, we have $g^x = g^{x \mod m}$.

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

•
$$g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$$

• By "generalized theorem" we have that $(g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \mod m}$.

An Example:

Compute $3^{25} \mod 35$ by hand.

$$\phi(35) = \phi(5 \cdot 7) = (5 - 1)(7 - 1) = 24$$

$$3^{25} \equiv 3^{25 \mod 24} \mod 35 \equiv 3^1 \mod 35$$

$$\equiv 3 \mod 35.$$

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes $a^m \mod N$ Set $temp \coloneqq 1$ For i = 1 to mSet $temp \coloneqq (temp \cdot a) \mod N$ return temp;

Is the following algorithm efficient (i.e. poly-time)?

```
ModExp(a, m, N) //computes a^m \mod N
Set temp \coloneqq 1
For i = 1 to m
Set temp \coloneqq (temp \cdot a) \mod N
return temp;
```

No—the run time is O(m). m can be on the order of N. This means that the runtime is on the order of O(N), while to be efficient it must be on the order of $O(\log N)$.

We can obtain an efficient algorithm via "repeated squaring."

```
ModExp(a, m, N) //computes a^m \mod N, where m = m_{n-1}m_{n-2} \cdots m_1m_0 are the bits of m.

Set s \coloneqq a

Set temp \coloneqq 1

For i = 0 to n - 1

If m_i = 1

Set temp \coloneqq (temp \cdot s) \mod N

Set s \coloneqq s^2 \mod N

return temp;
```

This is clearly efficient since the loop runs for n iterations, where $n = \log_2 m$.

Why does it work?

$$m = \sum_{i=0}^{n-1} m_i \cdot 2^i$$

Consider
$$a^m = a^{\sum_{i=0}^{n-1} m_i \cdot 2^i} = \prod_{i=0}^{n-1} a^{m_i \cdot 2^i}$$
.

In the efficient algorithm:

s values are precomputations of a^{2^i} , for i = 0 to n - 1 (this is the "repeated squaring" part since $a^{2^i} = (a^{2^{i-1}})^2$). If $m_i = 1$, we multiply in the corresponding s-value. If $m_i = 0$, then $a^{m_i \cdot 2^i} = a^0 = 1$ and so we skip the multiplication step.

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g \rangle = \{g^0, g^1, \dots, g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider Z^*_{13} :

2 is a generator of Z^*_{13} :

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	$16 \rightarrow 3$
2 ⁵	6
2 ⁶	12
27	$24 \rightarrow 11$
2 ⁸	22 → 9
2 ⁹	$18 \rightarrow 5$
2 ¹⁰	10
2 ¹¹	$20 \rightarrow 7$
212	$14 \rightarrow 1$

3 is not a generator of Z^*_{13} :

30	1
31	3
32	9
3 ³	$27 \rightarrow 1$
34	3
35	9
36	$27 \rightarrow 1$
37	3
3 ⁸	9
39	$27 \rightarrow 1$
310	3
311	9
312	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$. Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 2, we have that $0 \equiv m \mod i$
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z^*_{p} is a cyclic group of order p-1.

Prime-Order Cyclic Groups

Consider $Z^*_{p'}$, where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z^*_{p} is a cyclic group of order p 1 = 2q.

The subgroup of quadratic residues in Z^*_p is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group Consider Z^*_{11} . Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$. g = 2 is a generator of Z^*_{11} :

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	16 → 5
2 ⁵	10
2 ⁶	20 → 9
27	$18 \rightarrow 7$
28	$14 \rightarrow 3$
2 ⁹	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ n}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent.
 Addition of two even numbers mod p − 2 gives an even number mod p − 1, since for prime p > 3, p − 1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $h \in G$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to G if for all ppt algorithms A there exists a negligible function neg such that

$$\Pr[DLog_{A,G}(n) = 1] \le neg(n).$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_1 = g^{x_1}, h_2 = g^{x_2}$, compute $g^{x_1 \cdot x_2}$.

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G,q,g,g^{x},g^{y},g^{z}) = 1] - \Pr[A(G,q,g,g^{x},g^{y},g^{xy}) = 1]| \le neg(n).$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption