
Cryptography

Lecture 18



Announcements

• HW 4 due 4/10



Agenda

• Last time:
– Number theory

• This time:
– More number theory (cyclic groups)
– Hard problems (Discrete log and Diffie-Hellman 

problems)
– Elliptic Curve groups



Multiplicative Groups Mod N

• What about multiplicative groups modulo , where
is composite?

• Which numbers have multiplicative 
inverses ?
– such that has multiplicative inverse by 

Extended Euclidean Algorithm.
– such that does not, since is the 

smallest positive integer that can be written in the form 
for integer 

• Define . 
• is an abelian, multiplicative group.

– Why does closure hold?



Order of Multiplicative Groups Mod N

• What is the order of ?
• This has a name.  The order of is the

quantity , where is known as the Euler 
totient function or Euler phi function.

• Assume , where are distinct 
primes.
–

– Why?



Order of Multiplicative Groups Mod N

General Formula:

Theorem:  Let where the are 
distinct primes and .  Then



Another Special Case of Generalized 
Theorem

Corollary of generalized theorem:
For such that :



Another Useful Theorem

Theorem:  Let be a finite group with 
Then for any and any integer , we have

Proof:  We write , where is an 
integer and 
•
• By “generalized theorem” we have that 



An Example:

Compute by hand.



Modular Exponentiation



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

No—the run time is 𝑂(𝑚).  𝑚 can be on the order of 𝑁.  
This means that the runtime is on the order of 𝑂(𝑁), 
while to be efficient it must be on the order of 𝑂(log𝑁) .



Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 𝑚 =
𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.

Set 𝑠 ≔ 𝑎
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 0 to 𝑛 − 1

If 𝑚𝑖 = 1
Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁

Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where 𝑛 =
log2𝑚.



Modular Exponentiation

Why does it work?

𝑚 = ෍

𝑖=0

𝑛−1

𝑚𝑖 ⋅ 2
𝑖

Consider 𝑎𝑚 = 𝑎σ𝑖=0
𝑛−1𝑚𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1𝑎𝑚𝑖⋅2
𝑖
.

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2 ).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.



Cyclic Groups

For a finite group of order and , 
consider:

always forms a cyclic subgroup of .
However, it is possible that there are repeats in the 
above list.
Thus may be a subgroup of order smaller than 

.
If , then we say that is a cyclic group and 
that is a generator of 



Examples
Consider :

2଴ 1

2ଵ 2

2ଶ 4

2ଷ 8

2ସ 16 → 3

2ହ 6

2଺ 12

2଻ 24 → 11

2଼ 22 → 9

2ଽ 18 → 5

2ଵ଴ 10

2ଵଵ 20 → 7

2ଵଶ 14 → 1

is a generator of ∗
ଵଷ

is not a generator of ∗
ଵଷ

3଴ 1

3ଵ 3

3ଶ 9

3ଷ 27 → 1

3ସ 3

3ହ 9

3଺ 27 → 1

3଻ 3

3଼ 9

3ଽ 27 → 1

3ଵ଴ 3

3ଵଵ 9

3ଵଶ 27 → 1



Definitions and Theorems

Definition:  Let be a finite group and .  The order 
of is the smallest positive integer such that .

Ex: Consider .  The order of is .  The order 
of is .

Proposition 1: Let be a finite group and an 
element of order .  Then for any integer , we have 

.

Proposition 2: Let be a finite group and an 
element of order . Then iff





More Theorems
Proposition 3:  Let be a finite group of order and an element of 
order .  Then .

Proof: 
• We know by the generalized theorem of last class that ௠ ଴.
• By Proposition 2, we have that
• By definition of modulus, this means that .

Corollary:  if is a group of prime order , then is cyclic and all elements of 
except the identity are generators of 

Why does this follow from Proposition 3?

Theorem:  If is prime then ∗
௣

is a cyclic group of order . 



Prime-Order Cyclic Groups

Consider , where is a strong prime.

• Strong prime: , where is also 
prime.

• Recall that is a cyclic group of order 

The subgroup of quadratic residues in is a 
cyclic group of prime order .



Example of Prime-Order Cyclic Group
Consider 
Note that is a strong prime, since 

is a generator of :
2଴ 1

2ଵ 2

2ଶ 4

2ଷ 8

2ସ 16 → 5

2ହ 10

2଺ 20 → 9

2଻ 18 → 7

2଼ 14 → 3

2ଽ 6

The even powers of are the “quadratic residues” (i.e. the perfect 
squares).  Exactly half the elements of ∗

௣
are quadratic residues.

Note that the even powers of form a cyclic subgroup of order ௣ିଵ

ଶ

.

Verify: 
• closure (Multiplication translates into addition in the exponent.

Addition of two even numbers mod gives an even number 
mod , since for prime , is even.)

• Cyclic –any element is a generator.  E.g. it is easy to see that all
even powers of can be generated by ଶ.



The Discrete Logarithm Problem
The discrete-log experiment 
1. Run to obtain where is a cyclic group of 

order (with ) and is a generator of .
2. Choose a uniform

is given and outputs 
4. The output of the experiment is defined to be if

and otherwise.

Definition: We say that the DL problem is hard relative to if 
for all ppt algorithms there exists a negligible function 
such that 



The Diffie-Hellman Problems



The CDH Problem

Given and uniform , 
compute .



The DDH Problem

We say that the DDH problem is hard relative to if 
for all ppt algorithms , there exists a negligible 
function such that





Relative Hardness of the Assumptions

Breaking DLog Breaking CDH Breaking DDH

DDH Assumption CDH Assumption DLog 
Assumption




