Cryptography

Lecture 18

Announcements

- HW 4 due $4 / 10$ (only problus $1-7$)

Agenda

- Last time:
- Number theory
- This time:
- More number theory (cyclic groups)
- Hard problems (Discrete log and Diffie-Hellman problems)
- Elliptic Curve groups

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, \ldots, N-1\}$ have multiplicative inverses mod N ?
$-a$ such that $\operatorname{gcd}(a, N)=1$ has multiplicative inverse by Extended Euclidean Algorithm.
$-a$ such that $\operatorname{gcd}(a, N)>1$ does not, since $\operatorname{gcd}(a, N)$ is the smallest positive integer that can be written in the form $X a+Y N$ for integer X, Y.
- Define $Z_{N}^{*}:=\{a \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(a, N)=1\}$.
- Z_{N}^{*} is an abelian, multiplicative group.
- Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z_{N}^{*} ?
- This has a name. The order of Z_{N}^{*} is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N=p \cdot q$, where p, q are distinct primes.
$-\phi(N)=N-p-q+1=p \cdot q-p-1+1=$ $(p-1)(q-1)$.
-Why?

Order of Multiplicative Groups Mod N

General Formula:
Theorem: Let $N=\prod_{i} p_{i}^{e_{i}}$ where the $\left\{p_{i}\right\}$ are distinct primes and $e_{i} \geq 1$. Then

$$
\phi(N)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)
$$

Another Special Case of Generalized

 TheoremCorollary of generalized theorem:
For a such that $\operatorname{gcd}(a, N)=1$:

$$
\left|\vec{z}_{N}^{\alpha}\right|=\phi(N)
$$

$$
a^{\phi(N)} \equiv 1 \bmod N
$$

Another Useful Theorem

Theorem: Let G be a finite group with $m=|G|>$ 1. Then for any $g \in G$ and any integer x, we have

$$
g^{x}=g^{x \bmod m \leftarrow}
$$

Proof: We write $x=a \cdot m+b$, where a is an integer and $b \equiv x \bmod m$.

- $g^{x}=g^{a \cdot m+b}=\left(g^{m}\right)^{a} \cdot g^{b}$

- By "generalized theorem" we have that

$$
\left(g^{m}\right)^{a} \cdot g^{b}=1^{a} \cdot g^{b}=g^{b}=g^{x \bmod m} .
$$

An Example:

Compute $3^{25} \bmod 35$ by hand. R_{35}^{*}
$\phi(35)=\phi(5 \cdot 7)=(5-1)(7-1)=24$
$3^{25} \equiv 3^{25} \bmod 24 \bmod 35 \equiv 3^{1} \bmod 35$
$\equiv 3 \bmod 35$.

Modular Exponentiation
efficient alg's: polynomial in $\log (N)$ modulus.

$\frac{\text { Efficient }}{}$
$\frac{v_{\text {mod } N}}{\text { 1. group operation }}$ 2. finding inverses 3. exponentiation?

Modular Exponentiation
Is the following algorithm efficient (i.e. poly-time)?

$$
\operatorname{ModExp}(a, m, N) / / \text { computes } a^{m} \bmod (N) \quad a \in \mathbb{R}_{N}^{\alpha}
$$

Set temp $:=1$
For $i=1$ to m
Set temp $:=(t e m p \cdot a) \bmod N$
return temp;

Aside:

Compute
oven the integus
just writing this down takes more then $2^{128} \#$ of bits.

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$

$$
\text { Set temp }:=1
$$

$$
\text { For } i=1 \text { to } m
$$

$$
\text { Set temp }:=(\text { temp } \cdot a) \bmod N
$$

return temp;
No-the run time is $O(m)$. m can be on the order of N. This means that the runtime is on the order of $O(N)$, while to be efficient it must be on the order of $O(\log N)$.

Modular Exponentiation

We can obtain an efficient algorithm via "repeated squaring."
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$, where $m=$ $m_{n-1} m_{n-2} \cdots m_{1} m_{0}$ are the bits of m.

Set $s:=a$
Set temp $:=1$
For $i=0$ to $n-1$
If $m_{i}=1$
Set temp $:=($ temp $\cdot s) \bmod N$
Set $s:=s^{2} \bmod N \rightarrow$ repeated squaring

This is clearly efficient since the loop runs for n iterations, where $n=$ $\log _{2} m$.

Modular Exponentiation

Why does it work?

$$
m=\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}
$$

Consider $a^{m}=a^{\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}}=\prod_{i=0}^{n-1} a^{m_{i} \cdot 2^{i}}$.
In the efficient algorithm:
 in the ith iteration
s values are precomputations of $a^{2^{i}}$, for $i=0$ to $n-1$ (this is the "repeated squaring" part since $\left.a^{2^{i}}=\left(a^{2^{i-1}}\right)^{2}\right)$.
If $m_{i}=1$, we multiply in the corresponding s-value.
If $m_{i}=0$, then $a^{m_{i} \cdot 2^{i}}=a^{0}=1$ and so we skip the multiplication step.

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$
\langle g\rangle=\left\{g^{0}, g^{1}, \ldots, g^{m-1}\right\}
$$

$\langle g\rangle$ always forms a cyclic subgroup of G.
However, it is possible that there are repeats in the above list.
Thus $\langle g\rangle$ may be a subgroup of order smaller than m.

If $\langle g\rangle=G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider $Z^{*}{ }_{13}$:
2 is a generator of $Z^{*}{ }_{13}$:
$\left.\begin{array}{|l|cc|}\hline 2^{0} & 1 & - \\ \hline 2^{1} & 2 & - \\ \hline 2^{2} & 4 & - \\ \hline 2^{3} & 8 & - \\ \hline 2^{4} & 16 \rightarrow & 3\end{array}\right]$

3 is not a generator of $Z^{*}{ }_{13}$:
$\mathbb{Z}_{p}{ }^{p}$ pissing is always a cyclic

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^{i}=1$.

Ex: Consider Z_{13}^{*}. The order of 2 is 12 . The order of 3 is 3 .

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^{x}=$ $g^{x \bmod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^{x}=g^{y}$ iff $x \equiv y \bmod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^{m}=1=g^{0}$.
- By Propesition 2, we have that $0 \equiv m \bmod i$
- By definition of modulus, this means that $i \mid m$.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?
Theorem: If p is prime then $Z^{*}{ }_{p}$ is a cyclic group of order $p-1$.

Prime-Order Cyclic Groups

Consider $Z^{*}{ }_{p}$, where p is a strong prime.

- Strong prime: $p=2 q+1$, where q is also prime.
- Recall that $Z^{*}{ }_{p}$ is a cyclic group of order $p-$ $1=2 q$.

The subgroup of quadratic residues in $Z^{*}{ }_{p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^{*}
11°
Note that 11 is a strong prime, since $11=2 \cdot 5+1$. $g=2$ is a generator of $Z^{*}{ }_{11}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 5$
2^{5}	10
2^{6}	$20 \rightarrow 9$
2^{7}	$18 \rightarrow 7$
2^{8}	$14 \rightarrow 3$
2^{9}	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^{*}{ }_{p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}=$ q.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod $p-2$ gives an even number $\bmod p-1$, since for prime $p>3, p-1$ is even.)
- Cyclic -any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^{2}.

The Discrete Logarithm Problem

The discrete-log experiment $D \log _{A, G}(n)$

1. Run $\boldsymbol{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $|\mid q \|=n$) and g is a generator of G.
2. Choose a uniform $h \in G$
3. A is given G, q, g, h and outputs $x \in Z_{q}$
4. The output of the experiment is defined to be 1 if $g^{x}=h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[D \log _{A, \boldsymbol{G}}(n)=1\right] \leq \operatorname{neg}(n) .
$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$, compute $g^{x_{1} \cdot x_{2}}$.

The DDH Problem

We say that the DDH problem is hard relative to \boldsymbol{G} if for all ppt algorithms A, there exists a negligible
function neg such that

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right] \\
& -\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \mid \leq \operatorname{neg}(n) .
\end{aligned}
$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption

