Cryptography

Lecture 18

Announcements

• HW 4 due 4/10 (only problus 1-7)

Agenda

- Last time:
 - Number theory
- This time:
 - More number theory (cyclic groups)
 - Hard problems (Discrete log and Diffie-Hellman problems)
 - Elliptic Curve groups

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, ..., N-1\}$ have multiplicative inverses $mod\ N$?
 - a such that gcd(a, N) = 1 has multiplicative inverse by Extended Euclidean Algorithm.
 - a such that gcd(a, N) > 1 does not, since gcd(a, N) is the smallest positive integer that can be written in the form Xa + YN for integer X, Y.
- Define $Z_N^* := \{a \in \{1, ..., N-1\} | \gcd(a, N) = 1\}.$
- Z_N^* is an abelian, multiplicative group.
 - Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z_N^* ?
- This has a name. The order of Z_N^* is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.
 - $-\phi(N) = N p q + 1 = p \cdot q p 1 + 1 = (p-1)(q-1).$
 - Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let $N = \prod_i p_i^{e_i}$ where the $\{p_i\}$ are distinct primes and $e_i \geq 1$. Then

$$\phi(N) = \prod_{i} p_i^{e_i-1} (p_i - 1).$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem:

For a such that gcd(a, N) = 1: $a^{\phi(N)} \equiv 1 \bmod N$.

$$\mathbb{Z}_{N}^{\alpha}$$

$$|\mathbb{Z}_{N}^{\alpha}| = \phi(N)$$

Another Useful Theorem

Theorem: Let G be a finite group with m = |G| >

1. Then for any $g \in G$ and any integer x, we have

$$g^{x} = g^{x \mod m} = \sum_{i \in X \mod m}$$

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

•
$$g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$$

• By "generalized theorem" we have that $(g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \bmod m}.$

An Example: Compute $3^{25} \mod 35$ by hand.

$$\phi(35) = \phi(5 \cdot 7) = (5 - 1)(7 - 1) = 24$$

 $3^{25} \equiv 3^{25 \mod 24} \mod 35 \equiv 3^1 \mod 35$
 $\equiv 3 \mod 35$.

Is the following algorithm efficient (i.e. poly-time)?

```
ModExp(a, m, N) //computes a^{m}mod(N)
         Set temp := 1
         For i = 1 to m
                 Set temp := (temp \cdot a) mod N
         return temp;
Aside: 3 over the integers
Compute

just writing this down takes
more than 2128 # of 6its.
```

Is the following algorithm efficient (i.e. poly-time)?

```
ModExp(a, m, N) //computes a^m \mod N

Set temp \coloneqq 1

For i = 1 to m

Set temp \coloneqq (temp \cdot a) \mod N

return temp;
```

No—the run time is O(m). m can be on the order of N. This means that the runtime is on the order of O(N), while to be efficient it must be on the order of $O(\log N)$.

We can obtain an efficient algorithm via ("repeated squaring."

```
ModExp(a, m, N) //computes a^m \mod N, where m = m_{n-1}m_{n-2}\cdots m_1m_0 are the bits of m.

Set s\coloneqq a

Set temp\coloneqq 1

For i=0 to n-1

If m_i=1

Set temp\coloneqq (temp\cdot s) \mod N

Set s\coloneqq s^2 \mod N

The return temp;
```

This is clearly efficient since the loop runs for n iterations, where $n = \log_2 m$.

Why does it work?

$$m = \sum_{i=0}^{n-1} m_i \left(2^i \right)$$

Why does it work?
$$m=\sum_{i=0}^{n-1}m_i\cdot 2^i$$
 Consider $a^m=a^{\sum_{i=0}^{n-1}m_i\cdot 2^i}=\prod_{i=0}^{n-1}a^{m_i\cdot 2^i}$.
$$S=0$$
 In the efficient algorithm:

s values are precomputations of $a_i^{2^l}$, for i = 0 to n - 1 (this is the "repeated squaring" part since $a^{2^i} = (a^{2^{i-1}})^2$).

If $m_i = 1$, we multiply in the corresponding s-value.

If $m_i = 0$, then $a^{m_i \cdot 2^i} = a^0 = 1$ and so we skip the multiplication step.

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

 $(g) = \{g^0, g^1, \dots, g^{m-1}\}$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider Z^*_{13} :

2 is a generator of Z^*_{13} :

2 ⁰	1 —
2 ¹	2 –
2 ²	4 —
2^3	8 —
24	16 → 3
2 ⁵	6 —
2 ⁶	12
27	24 → 11 –
2 ⁸	22 → 9 -
2 ⁹	18 → 5
2 ¹⁰	10
2 ¹¹	20 → 7
212	14 → 1

DO)	
CP	p is prime
, 1))
is alu	vays a
	cyclic

3 ⁰	1			
3 ¹	3			
3 ²	9			
3^3	27 → 1 ~			
3 ⁴	3			
3 ⁵	9			
3 ⁶	27 → 1			
3 ⁷	3			
38	9			
3 ⁹	27 → 1			
310	3			
311	9			
3 ¹²	27 → 1			

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$.

Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 2, we have that $0 \equiv m \mod i$
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then $Z^*_{\ p}$ is a cyclic group of order p-1.

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z^*_p is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in $Z^*_{\ p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} .

Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$.

$$g=2$$
 is a generator of Z^*_{11} :

2 ⁰	1		
2^1	2		
2 ²	4		
2^3	8		
2 ⁴	16 → 5		
2 ⁵	10		
2 ⁶	20 → 9		
27	18 → 7		
28	14 → 3		
2 ⁹	6		

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod p-2 gives an even number mod p-1, since for prime p>3, p-1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $h \in G$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms \boldsymbol{A} there exists a negligible function neg such that

$$\Pr[DLog_{A,\mathbf{G}}(n)=1] \leq neg(n)$$
.

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_1 = g^{x_1}$, $h_2 = g^{x_2}$, compute $g^{x_1 \cdot x_2}$.

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A(G, q, g, g^x, g^y, g^y, g^{xy}) = 1]| \le neg(n).$$

Relative Hardness of the Assumptions

Breaking DLog → Breaking CDH → Breaking DDH

DDH Assumption → CDH Assumption → DLog Assumption