
Cryptography

Lecture 17

Announcements

• HW4 due 4/10/24 nstructor
OH on Friday, 5

Agenda

• More Number Theory!

Other groups over the integers

• We will be interested mainly in multiplicative
groups over the integers, since there are
computational problems believed to be hard
over such groups.
– Such hard problems are the basis of number-

theoretic cryptography.

• Group operation is multiplication mod p,
instead of addition mod p.

Multiplication mod p

Example:

Multiplicative Groups

Is a group with respect to multiplication mod
p?
• Closure—YES
• Identity—YES (1 instead of 0)
• Associativity—YES
• Inverse—NO

– 0 has no inverse since there is no integer such
that .

Multiplicative Group

For prime, define with operation
multiplication mod .

We will see that is indeed a multiplicative group!

To prove that is a multiplicative group, it is sufficient to
prove that every element has a multiplicative inverse
(since we have already argued that all other properties of
a group are satisfied).
This is highly non-trivial, we will see how to prove it using
the Euclidean Algorithm.

Inefficient method of finding inverses
mod p

Example: Multiplicative inverse of .

What is the time complexity?
Brute force search. In the worst case must try all numbers in ∗

ଵଵ
to find

the inverse.

This is exponential time! Why? Inputs to the algorithm are . The
length of the input is the length of the binary representation of . This
means that input size is approx. ଶ while the runtime is approx.
୪୭୥మ ଵଵ . The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.

Euclidean Algorithm

Theorem: Let be positive integers. Then
there exist integers such that

.

Given , the Euclidean algorithm can be used
to compute in polynomial time. The
extended Euclidean algorithm can be used to
compute in polynomial time.

Proving is a multiplicative group
In the following we prove that every element in ∗

௣
has a

multiplicative inverse when is prime. This is sufficient to prove that
௣
∗ is a multiplicative group.

Proof. Let ௣
∗ . Then , since is prime.

By the Euclidean Algorithm, we can find integers such that
.

Rearranging terms, we get that and so .
By definition of modulo, this implies that .
By definition of inverse, this implies that is the multiplicative inverse
of .

Note: By above, the extended Euclidean algorithm gives us a way to
compute the multiplicative inverse in polynomial time.

Extended Euclidean Algorithm
Example

Find: such that .

is the multiplicative inverse of

Time Complexity of Euclidean
Algorithm

When finding , the “ ” value gets
halved every two rounds.
Why?

Time complexity: .
This is polynomial in the length of the input.
Why?

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

No—the run time is 𝑂(𝑚). 𝑚 can be on the order of 𝑁.
This means that the runtime is on the order of 𝑂(𝑁),
while to be efficient it must be on the order of 𝑂(log𝑁) .

Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 𝑚 =
𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.

Set 𝑠 ≔ 𝑎
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 0 to 𝑛 − 1

If 𝑚𝑖 = 1
Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁

Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where 𝑛 =
log2𝑚.

Modular Exponentiation

Why does it work?

𝑚 = ෍

𝑖=0

𝑛−1

𝑚𝑖 ⋅ 2
𝑖

Consider 𝑎𝑚 = 𝑎σ𝑖=0
𝑛−1𝑚𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1𝑎𝑚𝑖⋅2
𝑖
.

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.

Getting Back to

Group operation:
multiplication modulo .
Order of a finite group is the number of
elements in the group.
Order of is

Fermat’s Little Theorem

Theorem: For prime , integer :
.

Corollary: For prime and such that :

Generalized Theorem

Theorem: Let be a finite group with ,
the order of the group. Then for any element

.

Corollary of Fermat’s Little Theorem is a special
case of the above when is the multiplicative
group and is prime.

Multiplicative Groups Mod N

• What about multiplicative groups modulo , where
is composite?

• Which numbers have multiplicative
inverses ?
– such that has multiplicative inverse by

Extended Euclidean Algorithm.
– such that does not, since is the

smallest positive integer that can be written in the form
for integer

• Define .
• is an abelian, multiplicative group.

– Why does closure hold?

Order of Multiplicative Groups Mod N

• What is the order of ?
• This has a name. The order of is the

quantity , where is known as the Euler
totient function or Euler phi function.

• Assume , where are distinct
primes.
–

– Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let where the are
distinct primes and . Then

Another Special Case of Generalized
Theorem

Corollary of generalized theorem:
For such that :

Another Useful Theorem

Theorem: Let be a finite group with
Then for any and any integer , we have

Proof: We write , where is an
integer and
•
• By “generalized theorem” we have that

An Example:

Compute by hand.

