Cryptography

Lecture 17/

Announcements

 HW4 due 4/10/24

Agenda

* More Number Theory!

Other groups over the integers

 We will be interested mainly in multiplicative
groups over the integers, since there are
computational problems believed to be hard
over such groups.

— Such hard problems are the basis of number-
theoretic cryptography.

* Group operation is multiplication mod p,
instead of addition mod p.

Multiplication mod p

Example:
3:-8mod 13 = 24 mod 13 = 11 mod 13.

Multiplicative Groups

Is Z,, a group with respect to multiplication mod
p?

* Closure—YES

* |dentity—YES (1 instead of 0)

* Associativity—YES

* |Inverse—NO

— 0 has no inverse since there is no integer a such
that 0 - a = 1 mod p.

Multiplicative Group

For p prime, define Z, = {1, ..., p — 1} with operation
multiplication mod p.

We will see that Z is indeed a multiplicative group!

To prove that Z;, is a multiplicative group, it is sufficient to
prove that every element has a multiplicative inverse
(since we have already argued that all other properties of
a group are satisfied).

This is highly non-trivial, we will see how to prove it using
the Euclidean Algorithm.

Inefficient method of finding inverses
mod p

Example: Multiplicative inverse of 9 mod 11.
9-1=9mod 11
-2=18 =7 mod 11
-3 =27 =5mod 11
-4 =36 =3 mod 11
-5=45=1mod 11

O© O O O

What is the time complexity?

Brute force search. In the worst case must try all 10 numbersin Z~ 4 to find
the inverse.

This is exponential time! Why? Inputs to the algorithm are (9,11). The
length of the input is the length of the binary representation of (9,11). This
means that input size is approx. log, 11 while the runtime is approx.
2108211 = 11. The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.

Euclidean Algorithm

Theorem: Let a,p be positive integers. Then
there exist integers X, Y such that Xa + Yp =

ogcd(a,p).

Given a, p, the Euclidean algorithm can be used
to compute gcd(a, p) in polynomial time. The
extended Euclidean algorithm can be used to
compute X, Y in polynomial time.

Proving Z, is a multiplicative group

In the following we prove that every elementin Z* hasa

. : . . P
multiplicative inverse when p is prime. This is sufficient to prove that
Z, is a multiplicative group.

Proof. Let a € Z;. Then gcd(a,p) = 1, since p is prime.

By the Euclidean Algorithm, we can find integers X,Y such that aX +
pY = gcd(a,p) = 1.

Rearranging terms, we get that pY = (aX — 1) andsop | (aX —1).
By definition of modulo, this implies that aX = 1 mod p.

By definition of inverse, this implies that X is the multiplicative inverse
of a.

Note: By above, the extended Euclidean algorithm gives us a way to
compute the multiplicative inverse in polynomial time.

Extended Euclidean Algorithm

Example

Find: X,Y suchthat 9X + 23Y = gcd(9,23) = 1.
23=2-945
9=1-54+4
5=1-4+1
4=4-14+0
1=5-1-4

1=5-1:-(9—-1:5)
1=(23-2-99-(9-(23-2-9))
1=2-23 -5-9
—5 = 18 mod 23 is the multiplicative inverse of 9 mod 23.

Time Complexity of Euclidean
Algorithm

When finding gcd(a, b), the “b” value gets
halved every two rounds.

Why?

Time complexity: 2log(b).
This is polynomial in the length of the input.
Why?

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;

No—the run time is O(m). m can be on the order of N.
This means that the runtime is on the order of O(N),
while to be efficient it must be on the order of O(log N) .

Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(a, m, N) //computes a™ mod N, where m =
My _1My_o - MMy are the bits of m.

Sets:i=a

Settemp =1

Fori=0ton—1
If‘mi =1

Set temp = (temp - s)mod N
Set s := s? mod N
return temp;

This is clearly efficient since the loop runs for n iterations, where n =
log, m.

Modular Exponentiation

Why does it work?

m=Zmi-2i

=0

. n-1_,..-i — oY)
Consider a™ = qZi=o ™2 =[] g™ 2,
In the efficient algorithm:

s values are precomputations of a,zl, for i_:1 0 ton — 1 (thisis the
. ” . l 1=

“repeated squaring” part since a? = (a?)?).

If m; = 1, we multiply in the corresponding s-value.

Ifm; = 0, then a™'2" = a® = 1 and so we skip the multiplication step.

Getting Back to Z,,

Group Z;; = {1,...,p — 1} operation:
multiplication modulo p.

Order of a finite group is the number of
elements in the group.

Orderof Z, isp — 1.

Fermat’s Little Theorem

Theorem: For prime p, integer a:
aP = a mod p.

Corollary: For prime p and a such that (a,p) = 1:
aP~1 = 1modyp

Generalized Theorem

Theorem: Let G be a finite group with m = |G|,
the order of the group. Then for any element
geEaG,gm=1.

Corollary of Fermat’s Little Theorem is a special
case of the above when G is the multiplicative
group Z~ . and p is prime.

Multiplicative Groups Mod N

What about multiplicative groups modulo N, where N
IS composite?

Which numbers {1, ..., N — 1} have multiplicative
inverses mod N?

— a such that gcd(a, N) = 1 has multiplicative inverse by
Extended Euclidean Algorithm.

— a such that gcd(a, N) > 1 does not, since gcd(a, N) is the

smallest positive integer that can be written in the form
Xa + YN forinteger X,Y.

Define Zy == {a € {1,...,N — 1}| gcd(a,N) = 1}.
Zy is an abelian, multiplicative group.
— Why does closure hold?

Order of Multiplicative Groups Mod N

* What is the order of Zy,?

* This has a name. The order of Z is the
quantity ¢(N), where ¢ is known as the Euler
totient function or Euler phi function.

* Assume N = p - q, where p, q are distinct
primes.
-¢p(N)=N —p—q+1=p-q —p -1+1=
(p —1D(q - D).
— Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let N = []; pfi where the {p;} are
distinct primes and e¢; = 1. Then

o) = | [- D).

Another Special Case of Generalized
Theorem

Corollary of generalized theorem:

For a such that gcd(a, N) = 1:
a®®™) =1 mod N.

Another Useful Theorem

Theorem: Let G be a finite group withm = |G| >

1. Then forany g € G and any integer x, we have
gx — gxmod m

Proof: We writex = a-m + b, where a is an
integer and b = x mod m.

. gx — ga-m+b — (gm)a : gb
* By “generalized theorem” we have that
(gm)a,gb — 1a,gb — gb — gxmodm_

An Example:

Compute 3%° mod 35 by hand.

d(35)=¢(5-7)=06B-1)(T7—-1) =24
325 = 325m0d 24 6 35 = 31 mod 35
= 3 mod 35.

