
Cryptography

Lecture 17



Announcements

• HW4 due 4/10/24 nstructor 
OH on Friday, 5



Agenda

• More Number Theory!



Other groups over the integers

• We will be interested mainly in multiplicative 
groups over the integers, since there are 
computational problems believed to be hard 
over such groups.
– Such hard problems are the basis of number-

theoretic cryptography.

• Group operation is multiplication mod p, 
instead of addition mod p.



Multiplication mod p

Example:



Multiplicative Groups

Is a group with respect to multiplication mod 
p?
• Closure—YES
• Identity—YES (1 instead of 0)
• Associativity—YES 
• Inverse—NO 

– 0 has no inverse since there is no integer such 
that .



Multiplicative Group

For prime, define with operation 
multiplication mod .

We will see that is indeed a multiplicative group!

To prove that is a multiplicative group, it is sufficient to 
prove that every element has a multiplicative inverse 
(since we have already argued that all other properties of 
a group are satisfied).
This is highly non-trivial, we will see how to prove it using 
the Euclidean Algorithm.



Inefficient method of finding inverses 
mod p

Example: Multiplicative inverse of .

What is the time complexity?
Brute force search.  In the worst case must try all numbers in ∗ to find 
the inverse.

This is exponential time!  Why?  Inputs to the algorithm are .  The 
length of the input is the length of the binary representation of .  This 
means that input size is approx. while the runtime is approx. 

.  The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.



Euclidean Algorithm

Theorem:  Let be positive integers.  Then 
there exist integers such that 

.

Given , the Euclidean algorithm can be used 
to compute in polynomial time.  The 
extended Euclidean algorithm can be used to 
compute in polynomial time.





Proving is a multiplicative group
In the following we prove that every element in ∗ has a 
multiplicative inverse when is prime.  This is sufficient to prove that 
∗ is a multiplicative group.

Proof.  Let ∗ .  Then , since is prime.
By the Euclidean Algorithm, we can find integers such that 

.
Rearranging terms, we get that and so .  
By definition of modulo, this implies that .
By definition of inverse, this implies that is the multiplicative inverse 
of .

Note:  By above, the extended Euclidean algorithm gives us a way to 
compute the multiplicative inverse in polynomial time.



Extended Euclidean Algorithm
Example

Find:  such that .

is the multiplicative inverse of 





Time Complexity of Euclidean 
Algorithm

When finding , the “ ” value gets 
halved every two rounds.
Why?

Time complexity:  .
This is polynomial in the length of the input.
Why?



Modular Exponentiation



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

No—the run time is 𝑂(𝑚).  𝑚 can be on the order of 𝑁.  
This means that the runtime is on the order of 𝑂(𝑁), 
while to be efficient it must be on the order of 𝑂(log𝑁) .



Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 𝑚 =
𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.

Set 𝑠 ≔ 𝑎
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 0 to 𝑛 − 1

If 𝑚𝑖 = 1
Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁

Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where 𝑛 =
log2𝑚.



Modular Exponentiation

Why does it work?

𝑚 = 

𝑖=0

𝑛−1

𝑚𝑖 ⋅ 2
𝑖

Consider 𝑎𝑚 = 𝑎σ𝑖=0
𝑛−1𝑚𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1𝑎𝑚𝑖⋅2
𝑖
.

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2 ).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.



Getting Back to 

Group operation:  
multiplication modulo .
Order of a finite group is the number of 
elements in the group.
Order of is 



Fermat’s Little Theorem

Theorem:  For prime , integer :
.

Corollary:  For prime and such that :



Generalized Theorem

Theorem:  Let be a finite group with , 
the order of the group.  Then for any element 

.

Corollary of Fermat’s Little Theorem is a special 
case of the above when is the multiplicative 
group and is prime.



Multiplicative Groups Mod N

• What about multiplicative groups modulo , where
is composite?

• Which numbers have multiplicative 
inverses ?
– such that has multiplicative inverse by 

Extended Euclidean Algorithm.
– such that does not, since is the 

smallest positive integer that can be written in the form 
for integer 

• Define . 
• is an abelian, multiplicative group.

– Why does closure hold?



Order of Multiplicative Groups Mod N

• What is the order of ?
• This has a name.  The order of is the

quantity , where is known as the Euler 
totient function or Euler phi function.

• Assume , where are distinct 
primes.
–

– Why?



Order of Multiplicative Groups Mod N

General Formula:

Theorem:  Let where the are 
distinct primes and .  Then



Another Special Case of Generalized 
Theorem

Corollary of generalized theorem:
For such that :



Another Useful Theorem

Theorem:  Let be a finite group with 
Then for any and any integer , we have

Proof:  We write , where is an 
integer and 
•
• By “generalized theorem” we have that 



An Example:

Compute by hand.




