Cryptography

Lecture 17

Announcements

- HW4 due 4/10/24

Agenda

- More Number Theory!

Ex of a Group

$$
\begin{aligned}
& \\
& \mathbb{R}_{p} \\
&=\left\{0, \ldots p p^{-1}\right\}
\end{aligned}
$$

- Closure
- Identity
- Inverse
- Associativity
α - Abelian (Commutative)
* Finite

Other groups over the integers

- We will be interested mainly in multiplicative groups over the integers, since there are computational problems believed to be hard over such groups.
- Such hard problems are the basis of numbertheoretic cryptography.
- Group operation is multiplication $\bmod p$, instead of addition mod p.

Multiplication $\bmod (\mathbb{P})$
Example:

$$
3 \cdot 8 \bmod 13 \equiv 24 \bmod 13 \equiv 11 \bmod 13
$$

$$
\mathbb{R}_{p}=\{0, \ldots, p-1\} \quad \cdot \bmod p
$$

Closure
identity $\sqrt{ } \frac{1}{X}$
Inverse $\frac{\bar{X}}{x}, 0$ does not have a multiplicative inverse Associativity $\sqrt{ }$
Abelian

Multiplicative Groups

Is Z_{p} a group with respect to multiplication mod p?

- Closure-YES
- Identity-YES (1 instead of 0)
- Associativity-YES
- Inverse-NO
- 0 has no inverse since there is no integer a such that $0 \cdot a \equiv 1 \bmod p$.

Multiplicative Group

For p prime, define $Z_{p}^{*}=\{1, \ldots, p-1\}$ with operation multiplication $\bmod p$.

We will see that Z_{p}^{*} is indeed a multiplicative group!
4 show closure
To prove that Z_{p}^{*} is a multiplicative group, it is sufficient to prove that every element has a multiplicative inverse (since we have already argued that all other properties of a group are satisfied).
This is highly non-trivial, we will see how to prove it using the Euclidean Algorithm.

Inefficient method of finding inverses

 $\bmod p$Example: Multiplicative inverse of $9 \bmod 11$.

$$
q \cdot x \equiv 1 \bmod |\mid
$$

$$
\begin{gathered}
9 \cdot 1 \equiv 9 \bmod 11 \\
9 \cdot 2 \equiv 18 \equiv 7 \bmod 11 \\
9 \cdot 3 \equiv 27 \equiv 5 \bmod 11 \\
9 \cdot 4 \equiv 36 \equiv 3 \bmod 11 \\
9.5 \equiv 45 \equiv 1 \bmod 11
\end{gathered}
$$

What is the time complexity?
Brute force search. In the worst case must try all 10 numbers in $Z^{*}{ }_{11}$ to find the inverse.

This is exponential time! Why? Inputs to the algorithm are $(9,11)$. The length of the input is the length of the binary representation of $(9,11)$. This means that input size is approx. $\log _{2} 11$ while the runtime is approx. $2^{\log _{2} 11}=11$. The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.

Euclidean Algorithm

Theorem: Let a, p be positive integers. Then there exist integers X, Y such that $X a+Y p=$ $\operatorname{gcd}(a, p)$.

Given a, p, the Euclidean algorithm can be used to compute $\operatorname{gcd}(a, p)$ in polynomial time. The extended Euclidean algorithm can be used to compute X, Y in polynomial time.
$0<a<p \geqslant$ interns
$\forall a,(\mathbb{P}) \exists x, y$ set $a X+b Y=\operatorname{gcd}(a, p)$
pis prime
R_{p}^{*}
(Asch: If $\operatorname{gcd}(a, b)=1$, then we say a, b are relatively prime)
$\forall a \in \mathbb{R}_{\rho}^{*}, \exists X, Y$ s.t. $a X+p Y=1 \Rightarrow$

$$
\begin{aligned}
& p Y=1-a X \Rightarrow \\
& p \mid(1-a X) \Leftrightarrow \\
& a X \bmod p \equiv 1
\end{aligned}
$$

by dy. of multiplicative inverse X is the molt. inverse of $a \bmod P$.

Proving Z_{p}^{*} is a multiplicative group

In the following we prove that every element in Z_{p}^{*} has a multiplicative inverse when p is prime. This is sufficient to prove that Z_{p}^{*} is a multiplicative group.

Proof. Let $a \in Z_{p}^{*}$. Then $\operatorname{gcd}(a, p)=1$, since p is prime.
By the Euclidean Algorithm, we can find integers X, Y such that $a X+$ $p Y=\operatorname{gcd}(a, p)=1$.
Rearranging terms, we get that $p Y=(a X-1)$ and so $p \mid(a X-1)$. By definition of modulo, this implies that $a X \equiv 1 \bmod p$.
By definition of inverse, this implies that X is the multiplicative inverse of a.

Note: By above, the extended Euclidean algorithm gives us a way to compute the multiplicative inverse in polynomial time.

Extended Euclidean Algorithm Example

Find: X, Y such that $\underline{9} X+23 Y=\operatorname{gcd}(9,23)=1$.

$$
\begin{aligned}
& \sqrt{23}=2 \cdot 9+5 \\
& 9=1 \cdot 5+4 \\
& 5=1 \cdot 4+1 \\
& 4=4 \cdot 1+0
\end{aligned}
$$

$$
\begin{gathered}
1=5-1 \cdot 4 \\
1=5-1 \cdot(9-1 \cdot 5) \\
1=(23-2 \cdot 9)-(9-(23-2 \cdot 9)) \\
1=2 \cdot 23-5 \cdot 9
\end{gathered}
$$

$-5=18 \bmod 23$ is the multiplicative inverse of $9 \bmod 23$.

Find multiplicative inverse of $9 \bmod 23$.

$$
\begin{aligned}
s & =23-2 \cdot 9 \\
4 & =9-5 \\
\sqrt{1} & =s-4 \\
0 & =4-4 \cdot 1
\end{aligned}
$$

	23	9
23	1	0
9	0	1
5	1	-2
4	-1	3
1	2	-5

$$
\begin{aligned}
& 1=2 \cdot 23-5 \cdot 9 \\
&-5 \equiv 18 \bmod 23
\end{aligned}
$$

Time Complexity of Euclidean Algorithm

When finding $\operatorname{gcd}(a, b)$, the " b " value gets halved every two rounds.
Why?

Time complexity: $2 \log (b)$.
This is polynomial in the length of the input. Why?

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$
Set temp $:=1$
For $i=1$ to m
Set temp $:=($ temp $\cdot a) \bmod N$
return temp;

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$

$$
\text { Set temp }:=1
$$

$$
\text { For } i=1 \text { to } m
$$

$$
\text { Set temp }:=(\text { temp } \cdot a) \bmod N
$$

return temp;
No-the run time is $O(m)$. m can be on the order of N. This means that the runtime is on the order of $O(N)$, while to be efficient it must be on the order of $O(\log N)$.

Modular Exponentiation

We can obtain an efficient algorithm via "repeated squaring."
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$, where $m=$ $m_{n-1} m_{n-2} \cdots m_{1} m_{0}$ are the bits of m.

Set $s:=a$
Set temp $:=1$
For $i=0$ to $n-1$
If $m_{i}=1$
Set temp := (temp $\cdot \mathrm{s}) \bmod N$
Set $s:=s^{2} \bmod N$
return temp;
This is clearly efficient since the loop runs for n iterations, where $n=$ $\log _{2} m$.

Modular Exponentiation

Why does it work?

$$
m=\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}
$$

Consider $a^{m}=a^{\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}}=\prod_{i=0}^{n-1} a^{m_{i} \cdot 2^{i}}$.
In the efficient algorithm:
s values are precomputations of ${a^{2}}^{i}$, for $i=0$ to $n-1$ (this is the "repeated squaring" part since $\left.a^{2^{i}}=\left(a^{2^{i-1}}\right)^{2}\right)$.
If $m_{i}=1$, we multiply in the corresponding s-value.
If $m_{i}=0$, then $a^{m_{i} \cdot 2^{i}}=a^{0}=1$ and so we skip the multiplication step.

Getting Back to Z_{p}^{*}

Group $Z_{p}^{*}=\{1, \ldots, p-1\}$ operation: multiplication modulo p.
Order of a finite group is the number of elements in the group.
Order of Z_{p}^{*} is $p-1$.

Fermat's Little Theorem

Theorem: For prime p, integer a :

$$
a^{p} \equiv a \bmod p
$$

Corollary: For prime p and a such that $(a, p)=1$:

$$
\begin{aligned}
& a^{p-1} \equiv 1 \bmod p \\
& \text { ordn of } \mathbb{R}_{p}^{\alpha}
\end{aligned}
$$

Generalized Theorem

Theorem: Let G be a finite group with $m=|G|$, the order of the group. Then for any element $g \in G, g^{m}=1$.

Corollary of Fermat's Little Theorem is a special case of the above when G is the multiplicative group $Z^{*}{ }_{p}$ and p is prime.

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, \ldots, N-1\}$ have multiplicative inverses mod N ?
$-a$ such that $\operatorname{gcd}(a, N)=1$ has multiplicative inverse by Extended Euclidean Algorithm.
$-a$ such that $\operatorname{gcd}(a, N)>1$ does not, since $\operatorname{gcd}(a, N)$ is the smallest positive integer that can be written in the form $X a+Y N$ for integer X, Y.
- Define $Z_{N}^{*}:=\{a \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(a, N)=1\}$.
- Z_{N}^{*} is an abelian, multiplicative group.
- Why does closure hold? What does it mean to

Show closure?

Order of Multiplicative Groups Mod N

- What is the order of Z_{N}^{*} ?
- This has a name. The order of Z_{N}^{*} is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N=p \cdot q$, where p, q are distinct primes.
$-\phi(N)=N-p-q+1=p \cdot q-p-1+1=$
-Why?

Order of Multiplicative Groups Mod N

General Formula:
Theorem: Let $N=\prod_{i} p_{i}^{e_{i}}$ where the $\left\{p_{i}\right\}$ are distinct primes and $e_{i} \geq 1$. Then

$$
\phi(N)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)
$$

How many clemens $\{1, \ldots N=p-q\}$ are relatively prime to N ? $\phi(N)$

$$
\begin{aligned}
& p, 2 p, 3 p \cdots \cdot q \quad \Rightarrow \quad N-p-q+1 \\
& q, 2 a, 3 q \ldots p
\end{aligned}
$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem:
For a such that $\operatorname{gcd}(a, N)=1$:

$$
a^{\phi(N)} \equiv 1 \bmod N .
$$

Another Useful Theorem

Theorem: Let G be a finite group with $m=|G|>$ 1. Then for any $g \in G$ and any integer x, we have

$$
g^{x}=g^{x \bmod m} .
$$

Proof: We write $x=a \cdot m+b$, where a is an integer and $b \equiv x \bmod m$.

- $g^{x}=g^{a \cdot m+b}=\left(g^{m}\right)^{a} \cdot g^{b}$
- By "generalized theorem" we have that

$$
\left(g^{m}\right)^{a} \cdot g^{b}=1^{a} \cdot g^{b}=g^{b}=g^{x \bmod m} .
$$

An Example:

Compute $3^{25} \bmod 35$ by hand.

$$
\begin{aligned}
& \phi(35)=\phi(5 \cdot 7)=(5-1)(7-1)=24 \\
& 3^{25} \equiv 3^{25} \bmod 24 \bmod 35 \equiv 3^{1} \bmod 35 \\
& \equiv 3 \bmod 35 .
\end{aligned}
$$

