Based on slides from:

Introduction to Cryptocurrencies a tutorial

Stefan Dziembowski

University of Warsaw

With some added and removed material

Announcements

- Midterm Upcoming on 3/13
- Review sheet and practice exam posted on course webpage/Canvas
- Solutions and Cheat Sheet posted soon on Canvas

An extended abstract of this tutorial (including the references) is available at: www.crypto.edu.pl/Dziembowski/talks/ bitcointutorial.pdf.
These slides are available at www.crypto.edu.pl/Dziembowski/talks.

Outline

1. Introduction to Bitcoin
2. Bitcoin mining pools
3. Security of Bitcoin
4. Smart contracts
5. Other cryptocurrencies
6. Conclusion

Part I
Introduction to Bitcoin

Main design principles

Main problem with the digital money

Double spending...

Bitcoin idea (simplified):

The users emulate a public trusted bulletin-board containing a list of transactions.
A transaction is of a form:

"User $\mathbf{P}_{\mathbf{1}}$ transfers a coin \#16fab13fc6890 to user $\mathbf{P}_{\mathbf{2}}{ }^{\prime}$
This prevents double spending.

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

The Merkle-Damgard Transform = Blockchain

FIGURE 5.1: The Merkle-Damgård transform.

Problem: How to reach consensus on the correct final Z which fixes the entire history?
First attempt: Majority vote!

Problem

How to define "majority" in a situation where everybody can join the network?

The Bitcoin solution

Define the "majority" as
the majority of the computing power
Now creating multiple identities does not help!

How is this enforced?

Main idea:

- use Proofs of Work
- incentivize honest users to constantly participate in the process

The honest users can use their idle CPU cycles.

Nowadays: often done on dedicated hardware.

Proofs of work

Introduced by Dwork and Naor [Crypto 1992] as a countermeasure against spam.

Basic idea:
Force users to do some computational work: solve a moderately difficult "puzzle" (checking correctness of the solution has to be fast)

A simple hash-based PoW

H -- a hash function whose
computation takes time TIME(H)

random x

Prover

finds s such that
$\mathrm{H}(\mathrm{s}, \mathrm{x})$ starts with n zeros (in binary)
salt
s

Verifier checks if H(s,x) starts with n zeros

Main idea

The users participating in the scheme are called the "miners".

They maintain a chain of blocks:

the "genesis block" created by Satoshi on 03/Jan/2009

block size < 1MB, which translates to max
7 trans./sec.

How to post on the board

Just broadcast (over the internet) your transaction to the miners.

And hope they will add it to the next block.

the miners are incentivized to do it.

Important:
They never add an invalid transaction (e.g. double spending)
a chain with an invalid transaction is itself not valid, so no rational miner would do it.

Main principles

1. It is computationally hard to extend the chain.
2. Once a miner finds an extension he broadcasts it to everybody.
3. The users will always accept "the longest chain" as the valid one.
the system
incentivizes them to do it

How are the PoWs used?

H - hash function more concretely in Bitcoin: H is SHA256.

Main idea: to extend the chain one needs to find salt such that

H(salt, H(block ${ }_{\mathrm{i}}$),transactions) starts with some number n of zeros

"Hashrate" = number of hashes computed per second

total hashrate over the last $\mathbf{2}$ years:

What if there is a "fork"?

For a moment let's say: the "longest" chain counts.

Does it make sense to "work" on a shorter chain?

Because everybody else is working on extending the longest chain.
Recall: we assumed that the majority follows the protocol.

How are the miners incentivized to participate in this game?

Short answer: they are paid (in Bitcoins) for this. We will discuss it in detail later...

An important feature

Suppose everybody behaves according to the protocol then:
every miner P_{i} whose computing power is an α_{i}-firaction of the total computing power mines an α_{i}-fraction of the blocks.

Intuitively this is because:
$\mathbf{P}_{\mathbf{i}}$'s chances of winning are proportional to the number of times $\mathbf{P}_{\mathbf{i}}$ can compute \mathbf{H} in a given time frame.

Freshness of the genesis block

I didn't know the genesis block before Bitcoin was launched (Jan 3, 2009)

Here is a heuristic "proof":
Block $_{0}$ contained a hash of a title from a front page of the London Times on Jan 3, 2009

> Chancellor on brink of second bailout for banks

A recent paper that shows how to generate the genesis block in a distributed way: [Andrychowicz, D., CRYPTO'15].

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

User identification

We use the digital signature schemes.

The users are identified by their public keys.

Digital signature schemes

A digital signature scheme consists of algorithms Gen, Sign and Vrfy, where:
input:

output:

Correctness:
for every (sk,pk) := Gen() and every M we have
Vrfy(pk,M,Sign(sk,M)) = yes

Security:
"without knowing sk it is infeasible to compute σ such that Vrfy(pk,M, σ) = yes"

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

Where does the money come from?

A miner who finds a new block gets a "reward" in BTC:

```
\approx4 years
```

- for the first 210,000 blocks: 50 BTC
- for the next 210,000 blocks: 25 BTC
- for the next 210,000 blocks: 12.5 BTC, and so on...

Note: $210,000 \cdot(50+25+12.5+\cdots \cdot) \rightarrow 21,000,000$

More details

Each block contains a transaction that transfers the reward to the miner.

Advantages:

1. It provides incentives to be a miner.
2. It also makes the miners interested in broadcasting new block asap.
this view was challenged in a recent paper:
Ittay Eyal, Emin Gun Sirer
Majority is not Enough: Bitcoin Mining is
Vulnerable
(we will discuss it later)

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

Bitcoin's money mechanics

Bitcoin is "transaction based".
Technically: there is no notion of a "coin" in Bitcoin.

Transaction syntax - simplified view

in the "mining process"

We say that T_{3} redeems T_{2}

How to "divide money"?

Multi-output

 transactions:

Multiple inputs

(User \mathbf{P}_{1} sends 10 BTC from \mathbf{T}_{1} to user \mathbf{P}_{4}, signature of \mathbf{P}_{1} on [\mathbf{T}_{4}],
$\mathrm{T}_{4}=$ User \mathbf{P}_{2} sends 7 BTC from T_{2} to user P_{4}, signature of P_{2} on [T_{4}], signature of P_{3} on [$\left.T_{4}\right]$)
all signatures need to be valid!

Time-locks

It is also possible to specify time \mathbf{t} when a transaction becomes valid.

