Cryptography

Lecture 11

Announcements

• HW3 due 3/6

Agenda

- Last time:
 - Domain Extension for MACs (K/L 4.4) and Class
 Exercise solutions
 - CCA security (K/L 3.7)
 - Unforgeability for Encryption (K/L 4.5)
- This time:
 - Authenticated Encryption (K/L 4.5)
 - Collision-Resistant Hash Functions (K/L 5.1)
 - Hash-and-Mac
 - Domain extension for CRHF

Chosen Ciphertext Security

Big Picture $\frac{\text{privacu}}{\text{c} \in \text{EnCr}(m)}$ K integrity/acthenticity m $(m, \ell \in MAC_{\kappa}(m))$ How do we propuly combine Enc & MAC to Smultaneously achieve privacy, integrity & authenticity Auth Enc

CCA Security

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

 $PrivK_{A,\Pi}^{cca}(n) = 1$ if b' = b and $PrivK_{A,\Pi}^{cca}(n) = 0$ if $b' \neq b$.

CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.

- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

CCA Security

A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries A there exists a negligible function *negl* such that

$$\Pr\left[\operatorname{PrivK^{cca}}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$: MAC security game

1. Run $Gen(1^n)$ to obtain key k.

\perp

- 2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.
- 3. Let $m \coloneqq Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.

Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible function *neg* such that:

 $\Pr[EncForge_{A,\Pi}(n) = 1] \leq neg(n).$

Authenticated Encryption Definition: A private-key encryption scheme is an authenticated encryption scheme if it is <u>CCA-</u> <u>secure and unforgeable.</u>

Generic Constructions

& must use independently generated keys for Enc + MAC in all these construction Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel. $c \leftarrow Enc_{k_E}(m)$ $(t) \leftarrow Mac_{k_M}(m)$ for for Authorsecond (c,t)Scherme deterministic MAC Is this secure? not (PA secure $m \left| \left| f_{k}(m) \right| \right|$

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

Is this secure? NO! Tag can leak info on mNOT SECURE

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together. $t \leftarrow Mac_{k_M}(m)$ $c \leftarrow Enc_{k_E}(m||t)$ c is sent Is this secure? $c \in Enc_{k_E}(m||t)$ $c \in Enc_{k_E}(m||t)$ $f \in C$ $f \in C$ Alg

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m) \quad c \leftarrow Enc_{k_E}(m||t)$$

$$c \text{ is sent} \quad C(A \text{ secure})$$

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message *m* is first encrypted and then a MAC tag is computed over the result $c \leftarrow Enc_{k_E}(m)$ $t \leftarrow Mac_{k_M}(c)$ (c,t)

Is this secure?

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$\begin{array}{c} c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c) \\ \langle c, t \rangle \end{array}$$

Is this secure? YES! As long as the MAC is (c, t') strongly secure.

Collision Resistant Hashing

Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (*Gen*, *H*) satisfying the following:

- Gen takes as input a security parameter 1^n and outputs a key s. We assume that $\widehat{(1^n)}$ is implicit in s.
- *H* takes as input a key *s* and a string $x \in \{0,1\}^*$ and outputs a string $H^{\mathfrak{G}}(x) \in \{0,1\}^{\ell(n)}$. $+|^{\mathfrak{G}}(\cdot)$

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ' . In this case, we also call H a compression function.

The collision-finding experiment

$Hashcoll_{A,\Pi}(n)$:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0,1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries Athere is a negligible function *neg* such that

 $\Pr[Hashcoll_{A,\Pi}(n) = 1] \leq neg(n).$ Choice of (5), vandom coins of A

Message Authentication Using Hash Functions

Alternative to CBC-MAC

Construction: m

$$\mathcal{L} = MAC_{K}(\mathcal{H}^{s}(m))$$

 128

Hash-and-Mac Construction

Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows:

- Gen': on input 1^n , choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' \coloneqq \langle k, s \rangle$.
- Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.
- Vrfy': on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.

Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.

Proof Intuition m^{*}, 2^{*}

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

- 1. $H^{s}(m^{*}) = H^{s}(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^{s} .
- 2. $H^{s}(m^{*}) \neq H^{s}(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π .

Domain Extension

The Merkle-Damgard Transform

FIGURE 5.1: The Merkle-Damgård transform.

The Merkle-Damgard Transform

Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct hash function (Gen, H) as follows:

- Gen: remains unchanged
- *H*: on input a key *s* and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:
 - 1. Set $B \coloneqq \left[\frac{L}{n}\right]$ (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \ldots, x_B . Set $x_{B+1} \coloneqq L$, where L is encoded as an n-bit string.
 - 2. Set $z_0 \coloneqq 0^n$. (This is also called the IV.)
 - 3. For i = 1, ..., B + 1, compute $z_i \coloneqq h^s(z_{i-1} || x_i)$.
 - 4. Output z_{B+1} .

Security of Merkle-Damgard

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).