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Traditional Crypto Assumptions

• Factoring: Given 𝑁𝑁 = 𝑝𝑝𝑝𝑝, find 𝑝𝑝, 𝑝𝑝
– RSA Given 𝑁𝑁 = 𝑝𝑝𝑝𝑝, 𝑒𝑒, 𝑥𝑥𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, find 𝑥𝑥.

• Discrete Log: Given 𝑔𝑔𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, find 𝑥𝑥.
– Diffie-Hellman Assumptions (𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑥𝑥𝑦𝑦), 

(𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧)



Are They Secure?
• Algorithmic Advances:

– Factoring: Best algorithm time 2 �𝑂𝑂(𝑛𝑛
1
3) to factor 𝑛𝑛-bit number.

– Discrete log: Best algorithm 2 �𝑂𝑂(𝑛𝑛
1
3) for groups 𝑍𝑍𝑝𝑝∗ , where 𝑝𝑝 is  𝑛𝑛

bits.
• [Adrian et al. 2015] With preprocessing could possibly be feasible for 

nation-states and 𝑛𝑛 = 1024.
• Quasipolynomial time algorithms for small characteristic fields. Not 

known to apply in practice.

• Quantum Computers:
– Shor’s algorithm solves both factoring and discrete log in 

quantum polynomial time ( �𝑂𝑂(𝑛𝑛2)).



Are They Secure?
“For those partners and vendors that have not yet made 
the transition to Suite B algorithms (ECC), we recommend 
not making a significant expenditure to do so at this point 
but instead to prepare for the upcoming quantum 
resistant algorithm transition.... Unfortunately, the 
growth of elliptic curve use has bumped up against the 
fact of continued progress in the research on quantum 
computing, necessitating a re-evaluation of our 
cryptographic strategy. ”—NSA Statement, August 2015



Post-Quantum Approach

• New set of assumptions based on finding 
short vectors in lattices.

• Believed to be hard for quantum computers.
• Evidence of hardness “worst case to average 

case reduction”.
• Versatile: Can essentially construct all 

cryptosystems out of these assumptions.



My Research
• New efficient cryptosystems from post-quantum and FHE

assumptions [1], [7]
• Concrete hardness of post-quantum cryptosystems (with or

without side information) [2], [3], [4], [5], [6], [8], [9]
• Concrete hardness of FHE (with or without side information) [10]

[1] Constant-Round Group Key-Exchange from the Ring-LWE Assumption. D. Apon, D. Dachman-Soled, H. Gong, J. Katz. PQCrypto 2019.
[2] LWE with Side Information: Attacks and Concrete Security Estimation. D. Dachman-Soled, L. Ducas, H. Gong, M. Rossi, CRYPTO 2020.
[3 Security of NewHope under Partial Key Exposure. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Research in Mathematics and 
Public Policy, 2020
[4] (In)Security of Ring-LWE Under Partial Key Exposure. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Journal of Mathematical 
Cryptology, 2020.
[5] Towards a Ring Analogue of the Leftover Hash Lemma. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Journal of 
Mathematical Cryptology, 2020.
[6] BKW Meets Fourier: New Algorithms for LPN with Sparse Parities. D. Dachman-Soled, H. Gong, H. Kippen, A. Shahverdi. TCC 2021
[7] Compressed Oblivious Encoding for Homomorphically Encrypted Search. S. G. Choi, D. Dachman-Soled, D. Gordon, L. Liu, A. 
Yerukhimovich. CCS 2021
[8] When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer. M. Fahr Jr., H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. 
Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich, D. Apon. CCS 2022, RWC 2023
[9] Refined Security Estimation for LWE with Hints via a Geometric Approach. D Dachman-Soled, H Gong, T Hanson, H Kippen, CRYPTO 
2023.
[10] On the Concrete Security of Approximate FHE with Noise-Flooding Countermeasures, Cryptology ePrint Archive.



Lattices
An 𝑛𝑛-dimensional lattice L is an additive discrete subgroup of 𝑅𝑅𝑛𝑛. A 
basis 𝑩𝑩 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 defines a lattice L(𝑩𝑩) in the following way: 

𝐿𝐿 𝑩𝑩 = {𝒗𝒗 ∈ 𝑅𝑅𝑛𝑛 𝑠𝑠. 𝑡𝑡. 𝒗𝒗 = 𝑩𝑩𝑩𝑩 for some 𝑩𝑩 ∈ 𝑍𝑍𝑛𝑛}.
“integer linear combinations of the basis vectors”

𝑟𝑟

𝒊𝒊-th successive minima 𝝀𝝀𝒊𝒊(𝑳𝑳(𝑩𝑩)): The 
smallest radius 𝑟𝑟 such that there are 𝑖𝑖
linearly independent vectors 
{𝑣𝑣1, … , 𝑣𝑣𝑖𝑖} of length at most 𝑟𝑟.

Shortest vector: (1,2)
𝜆𝜆1 = 5

Shortest basis: 3 1
1 2
𝜆𝜆2 = 10



Lattices
An 𝑛𝑛-dimensional lattice L is an additive discrete subgroup of 𝑅𝑅𝑛𝑛. A 
basis 𝑩𝑩 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 defines a lattice L(𝑩𝑩) in the following way: 

𝐿𝐿 𝑩𝑩 = {𝒗𝒗 ∈ 𝑅𝑅𝑛𝑛 𝑠𝑠. 𝑡𝑡. 𝒗𝒗 = 𝑩𝑩𝑩𝑩 for some 𝑩𝑩 ∈ 𝑍𝑍𝑛𝑛}.
“integer linear combinations of the basis vectors”

𝑟𝑟

Basis is not unique!

For the lattice to the right,
3 1
1 2 form a basis

4 9
3 8 also form a basis

Given two bases 𝐵𝐵,𝐵𝐵𝐵, they define the 
same lattice iff 𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵, where 𝐵𝐵 is a 
unimodular matrix (determinant ±1). 



Hard Lattice Problems
• Are all parameterized by “approximation factor” 𝛾𝛾 > 1.
• Shortest Vector Problem (SVP): Given a basis B, find a 

non-zero vector 𝒗𝒗 ∈ 𝐿𝐿(𝑩𝑩) whose length is at most 𝛾𝛾 ⋅
𝜆𝜆1(𝐿𝐿(𝑩𝑩)).

• Shortest Independent Vector Problem (SIVP): Given a 
basis B, find a linearly independent set {𝑣𝑣1, … , 𝑣𝑣𝑛𝑛} such 
that all vectors have length at most 𝛾𝛾 ⋅ 𝜆𝜆𝑛𝑛(𝐿𝐿(𝑩𝑩)).

• Gap Shortest vector problem (GapSVP): Given a basis 
B, and a radius r > 0 
– Return YES if 𝜆𝜆1 𝐿𝐿 𝐵𝐵 ≤ 𝑟𝑟
– Return NO if 𝜆𝜆1 𝐿𝐿 𝐵𝐵 > 𝛾𝛾 ⋅ 𝑟𝑟.

Believed hard 
even for a 
quantum 

computer!



Cryptographic Hard Problems



The SIS Problem

= 0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝A z×

Problem: Given A, find z ∈ 0,1 𝑚𝑚

(or sufficiently “short” z)

Public 𝑛𝑛 × 𝑚𝑚 matrix A, with 
entries chosen at random 
over 𝑍𝑍𝑝𝑝

𝑛𝑛 ≪ 𝑚𝑚

Dimension 𝑛𝑛

Dimension 𝑚𝑚



Relation to Lattices

• Worst-Case to Average-Case Reduction: 
Breaking the cryptosystem on average is as 
hard as breaking the hardest instance of the 
underlying lattice problem.

• SIS:
– Worst-Case to Average-Case Reduction from SIVP.



CRHF from Lattices



CRHF from Lattices

Public 
Matrix:

Input:A z

To evaluate the 
hash on 𝑧𝑧
output:

Public 𝑛𝑛 × 𝑚𝑚 matrix A, with 
entries chosen at random 
over 𝑍𝑍𝑝𝑝

𝑧𝑧 ∈ 0,1 𝑚𝑚

z×A = u

𝑢𝑢 ∈ 𝑍𝑍𝑝𝑝𝑛𝑛



CRHF from Lattices

A z

Given a collision
𝑧𝑧1, 𝑧𝑧2 ∈ 0,1 𝑚𝑚: 𝑧𝑧1×A

𝑧𝑧2

×= A

Obtain
(𝑧𝑧1−𝑧𝑧2) ∈
−1,0,1 𝑚𝑚: 𝑧𝑧1× ( − )A = 0

𝑧𝑧2



The LWE Problem (Search)

A × s + e = u

Public 𝑚𝑚 × 𝑛𝑛 matrix A, with 
entries chosen at random 
over 𝑍𝑍𝑝𝑝

Secret 𝑛𝑛-dimension vector s 
with entries chosen at random

𝑚𝑚-dimension error 
vector e, with entries 
sampled from χ.

Operations are mod p.

Problem: Given, A, u = As+e, find s.



The LWE Problem (Decision)

A × s + e = u

Public 𝑚𝑚 × 𝑛𝑛 matrix A, with 
entries chosen at random 
over 𝑍𝑍𝑝𝑝

Secret 𝑛𝑛-dimension vector s 
with entries chosen at random

𝑚𝑚-dimension error 
vector e, with entries 
sampled from χ.

Operations are mod p.

≈ v

Problem: Distinguish (A , u) from (A, v)



Relation to Lattices

• Worst-Case to Average-Case Reduction: 
Breaking the cryptosystem on average is as 
hard as breaking the hardest instance of the 
underlying lattice problem.

• LWE:
– Worst-Case to Average-Case Quantum Reduction 

from SIVP.
– Worst-Case to Average-Case Classical Reductions 

from GapSVP.



Lattice-Based Encryption



Regev’s Cryptosystem [Regev ’04]

A u

s

Public 
Key:

Secret 
Key:

u = As + e



Regev’s Cryptosystem—Encryption of 
𝑚𝑚 ∈ {0,1}

Ar

r

(1)

(2)

×

+ 𝑚𝑚 ⋅
𝑝𝑝
2

r ∈ 0,1 𝑚𝑚 chosen at 
random.

u
×



Regev’s Cryptosystem—Decryption

r

Ar s×

−
u

×

×

+ 𝑚𝑚 ⋅
𝑝𝑝
2

u = As + e



Regev’s Cryptosystem—Decryption 

r

Ar s×

−
u

×

× + 𝑚𝑚 ⋅
𝑝𝑝
2

u = As + e



Regev’s Cryptosystem—Decryption 

+ 𝑚𝑚 ⋅
𝑝𝑝
2r

u
×

r ×

−

w w = As

u = As + e

= r × e + 𝑚𝑚 ⋅
𝑝𝑝
2



Regev’s Cryptosystem—Decryption 

+ 𝑚𝑚 ⋅
𝑝𝑝
2r

u
×

r ×

−

w w = As

u = As + e

= r × e + 𝑚𝑚 ⋅
𝑝𝑝
2

≈ 0 + 𝑚𝑚 ⋅
𝑝𝑝
2



Properties of LWE

• Equivalance of Search/Decision LWE
• Equivalence of LWE with random secret/secret 

drawn from error distribution



Efficiency
• Efficiency is a main concern in lattice-based 

cryptosystems.
• In both SIS and LWE-based cryptosystems, the 

public key consists of a random matrix of size 
m × n (𝑚𝑚 ≥ 𝑛𝑛 log 𝑝𝑝),  requiring space  
𝑂𝑂(𝑛𝑛2log2 𝑝𝑝) .
– RSA and discrete-log based cryptosystems: public 

key size is linear in the security parameter.  
• To reduce the public key size, consider lattices 

with structure.
• This is the Ring-LWE setting. 



Ring-LWE Setting

• Highly efficient key exchange protocols are 
possible in the Ring-LWE setting. 
– Similar to Diffie-Hellman Key Exchange

• It is likely that at least one such scheme will be 
standardized by NIST.

• Details in the slides, but will skip in the 
lecture.



Summary

• Lattice-based cryptography is a promising 
approach for efficient, post-quantum 
cryptography.

• All the basic public key primitives can be 
constructed from these assumptions:
– Public key encryption, Key Exchange, Digital 

Signatures
• For more information on research projects, 

please contact me at: danadach@umd.edu

mailto:danadach@umd.edu


Thank you!



The Ring Setting
• Quotient ring Z𝑞𝑞[𝑥𝑥]/Φ𝑚𝑚(𝑥𝑥), where Φ𝑚𝑚 is the m-th

cyclotomic polynomial of degree 𝜑𝜑(𝑚𝑚)
– e.g.,Φ2𝑛𝑛 = 𝑥𝑥𝑛𝑛 + 1,𝑛𝑛 = 2,𝑝𝑝 = 13. 
– 𝑥𝑥2 = −1 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥2 + 1)
– 12𝑥𝑥3 + 15𝑥𝑥2 + 9𝑥𝑥 + 25 → 12𝑥𝑥3 + 2𝑥𝑥2 + 9𝑥𝑥 +

12 → 𝑥𝑥 − 2 + 9𝑥𝑥 + 12 → 10,10 .
• Lattice is defined as an ideal 𝐼𝐼 ⊆ 𝑍𝑍[𝑥𝑥]/Φ𝑚𝑚(𝑥𝑥).  
• Ring-LWE and ring-SIS problems are defined by 

substituting the matrix A with polynomials from the 
quotient ring and substituting polynomial 
multiplication for matrix-vector multiplication.  

• The public key is now a polynomial in Z𝑞𝑞[𝑥𝑥]/Φ𝑚𝑚(𝑥𝑥), 
and so can be described using 𝑂𝑂(𝑛𝑛 log 𝑝𝑝) bits.



NTT Transform
Consider Φ𝑚𝑚, where 𝑚𝑚 is a power of 2. Then degree is equal 
to 𝑛𝑛, power of 2, 𝑚𝑚 = 2𝑛𝑛. Φ2𝑛𝑛 = 𝑥𝑥𝑛𝑛 + 1
• Consider prime 𝑝𝑝 s.t. 𝑝𝑝 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑛𝑛.
• Then we have 𝑛𝑛 2𝑛𝑛-th primitive roots modulo 𝑝𝑝

– Why? 𝑍𝑍𝑞𝑞∗ is cyclic with order 𝑝𝑝 − 1. 2𝑛𝑛 | 𝑝𝑝 − 1 .
– Let 𝑔𝑔 be a generator of 𝑍𝑍𝑞𝑞∗ . 𝑔𝑔 is a 𝑝𝑝 − 1 -th primitive root.
– 𝑔𝑔𝑎𝑎⋅2𝑛𝑛 = 𝑔𝑔𝑞𝑞−1, since 2𝑛𝑛 | (𝑝𝑝 − 1). 𝑔𝑔𝑎𝑎 is a 2𝑛𝑛-th primitive root. 

Also (𝑔𝑔𝑎𝑎)𝑖𝑖 , where 𝑖𝑖 is relatively prime to 2𝑛𝑛.
– Note that 𝑔𝑔𝑎𝑎 𝑛𝑛 = −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝. Modulo 𝑥𝑥𝑛𝑛 + 1 means 𝑥𝑥𝑛𝑛 = −1.
– Let 𝛾𝛾1, … , 𝛾𝛾𝑛𝑛 be the 𝑛𝑛 number of 2𝑛𝑛-th primitive roots

• For a polynomial 𝑝𝑝 𝑥𝑥 ∈ 𝑍𝑍𝑞𝑞 𝑥𝑥 /𝑥𝑥𝑛𝑛+1
• For every 𝛾𝛾𝑖𝑖 , 𝑝𝑝 𝛾𝛾𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is equal to taking 𝑝𝑝(𝑥𝑥) modulo 
𝑥𝑥𝑛𝑛 + 1 and modulo 𝑝𝑝 and then evaluating the reduced 
polynomial at 𝛾𝛾𝑖𝑖.



NTT Transform 

• For a polynomial 𝑝𝑝 𝑥𝑥 ∈ 𝑍𝑍𝑞𝑞 𝑥𝑥 /𝑥𝑥𝑛𝑛+1
• Evaluate 𝑝𝑝 𝑥𝑥 on all 𝑛𝑛 number of 2𝑛𝑛-th

primitive roots. Obtain a vector 
𝑝𝑝 𝛾𝛾1 … 𝑝𝑝(𝛾𝛾𝑛𝑛).

• Can now do both addition and multiplication 
coordinate-wise.



Key Exchange from Ring-LWE



Simple Key Exchange
𝑃𝑃1 𝑃𝑃2

𝑠𝑠1 𝑠𝑠2

(𝑎𝑎,𝑢𝑢1 = 𝑎𝑎 ⋅ 𝑠𝑠1 + 𝑒𝑒1)

(𝑎𝑎,𝑢𝑢2 = 𝑎𝑎 ⋅ 𝑠𝑠2 + 𝑒𝑒2)

𝑢𝑢2 ⋅ 𝑠𝑠1 ≈ 𝑎𝑎 ⋅ 𝑠𝑠2 ⋅ 𝑠𝑠1 𝑢𝑢1 ⋅ 𝑠𝑠2 ≈ 𝑎𝑎 ⋅ 𝑠𝑠1 ⋅ 𝑠𝑠2RECONCILIATION
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