An Introduction to Lattice-Based Cryptography II

Dana Dachman-Soled University of Maryland danadach@umd.edu

Rejection Sampling

- Problem: Sample from a distribution D_f with probability density function f(x) given draws from a distribution D_g with probability density function g(x).
- Assuming $\forall x, f(x) \leq M \cdot g(x)$:
 - Sample from $x \leftarrow D_g$
 - Accept x with probability $\frac{f(x)}{M \cdot a(x)}$.
- If condition holds then $\forall x, \frac{f(x)}{M} \cdot g(x) \leq 1$
- Probability of outputting x is $\Pr[sampling x]$. $\Pr[sample \ is \ accepted] = g(x) \cdot \frac{f(x)}{M \cdot g(x)} = \frac{f(x)}{M}$.
- Normalizing, we get the correct probability distribution
- Expected number of draws from g(x) before a sample is accepted is M.

Lattice-Based Signatures Lyubashevsky 2011

Key Generation

Sign—Attempt 1

Verify

Given public key (A, T), message m and signature (\tilde{c}, \tilde{z}) :

Check that $\tilde{c} = H(\tilde{d}||m)$ and \tilde{z} is short.

Security

• If adversary has not seen any signatures, can show (using RO methodology) that it is possible to extract the following from a forging adversary:

$$-z_1$$
 s.t. $Az_1 - Tc_1 = Ay$

$$-z_2 \text{ s.t. } Az_2 - Tc_2 = Ay$$

- Subtracting and recalling that T = AS we obtain:

$$A(z_1 - z_2) - T(c_1 - c_2) = 0$$

$$A(z_1 - z_2) - A(S(c_1 - c_2)) = 0$$

- Finding such z_1, z_2 was shown to be as hard as SIS.
- But what if adversary gets to see signatures? Is this still hard?

Sign

