Cryptography ENEE/CMSC/MATH 456: Homework 5

Due by 2 pm on $4 / 24 / 2024$.

1. Prove formally that the hardness of the CDH problem relative to G implies the hardness of the discrete logarithm problem relative to G.
2. Determine the points on the elliptic curve $E: y^{2}=x^{3}+2 x+1$ over Z_{11}. How many points are on this curve?
3. Can the following problem be solved in polynomial time? Given a prime p, a value $x \in Z_{p-1}^{*}$ and $y:=g^{x} \bmod p\left(\right.$ where g is a uniform value in Z_{p}^{*}), find g, i.e., compute $y^{1 / x} \bmod p$. If your answer is "yes," give a polynomial-time algorithm. If your answer is "no," show a reduction to one of the assumptions introduced in this chapter.
4. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_{A} with Alice and a different key k_{B} with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?
5. Consider the subgroup of Z_{23}^{*} consisting of quadratic residues modulo 23 . This group consists of the following elements: $\{1,2,3,4,6,8,9,12,13,16,18\}$. We choose $g=2$ to be the generator of the subgroup. Let $(23,11,2, x=4)$ be the secret key for ElGamal. Find the corresponding public key. Then encrypt the message $m=3$, using randomness $r=6$, obtaining some ciphertext c. Decrypt c to recover m. Do the computations by hand and show your work.

Hint: To speed up your computations, use the fact that $7^{3} \equiv-2 \bmod 23,4^{-1}=6 \bmod 23$.
6. Consider the following key-exchange protocol:

Common input: The security parameter 1^{n}.
(a) Alice runs $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g).
(b) Alice chooses $x_{1}, x_{2} \leftarrow Z_{q}$ and sends $\alpha=x_{1}+x_{2}$ to Bob.
(c) Bob chooses $x_{3} \leftarrow Z_{q}$ and sends $h_{2}=g^{x_{3}}$ to Alice.
(d) Alice sends $h_{3}=g^{x_{2} \cdot x_{3}}$ to Bob.
(e) Alice outputs $h_{2}^{x_{1}}$. Bob outputs $\left(g^{\alpha}\right)^{x_{3}} \cdot\left(h_{3}\right)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).
7. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
8. Consider the following variant of El Gamal encryption. Let $p=2 q+1$, let G be the group of squares modulo p, and let g be a generator of G. The private key is (G, g, q, x) and the public key is $G, g, q, h)$, where $h=g^{x}$ and $x \in Z_{q}$ is chosen uniformly. To encrypt a message $m \in Z_{q}$, choose a uniform $r \in Z_{q}$, compute $c_{1}:=g^{r} \bmod p$ and $c_{2}:=h^{r}+\bmod p$, and let the ciphertext be $\left\langle c_{1}, c_{2}\right\rangle$. Is this scheme CPA-secure? Prove your answer.
9. Recall that the DDH assumption is false in the group $\mathbb{G}:=\mathbb{Z}_{p}^{*}$, of order $q=p-1$, where p is prime. This is due to the fact that the Legendre symbol allows one to check whether or not $x \in \mathbb{Z}_{p}^{*}$ is a quadratic residue-i.e. a perfect square.
(a) What information is leaked about the message $m \in \mathbb{G}$ when ElGamal encryption is instantiated with the group $\mathbb{G}:=\mathbb{Z}_{p}^{*}$? Explain your answer.
Hint: Consider using the Legendre symbol to compute whether $h=g^{x}, g^{y}$, and $h^{y} \cdot m$ are quadratic residues. What can be deduced about m ? When is this information leaked?
(b) Why does this problem go away when we instantiate El Gamal Encryption with the group \mathbb{G}^{\prime} of order q^{\prime} that contains only the quadratic residues in \mathbb{G} where $p=2 q^{\prime}+1$ is a strong prime?
10. Assume the Schnorr identification scheme is run in the group Z_{p}^{*}, where p is a sufficiently large prime. Recall that in this case, one can efficiently compute the Legendre symbol of $y=g^{x}, g^{k}$. Explain how a verifier can use this information to cause the distribution of s to not be uniform random. In particular, if x is odd, the verifier can cause s to always be even. Explain why this would mean that the simulation strategy we gave in class for Schnorr's algorithm would fail.

