
Cryptography ENEE/CMSC/MATH 456: Homework 5
Due by 2pm on 4/24/2024.

1. Prove formally that the hardness of the CDH problem relative to G implies the hardness of the
discrete logarithm problem relative to G.

2. Determine the points on the elliptic curve E : y2 = x3 + 2x+ 1 over Z11. How many points are
on this curve?

3. Can the following problem be solved in polynomial time? Given a prime p, a value x ∈ Z∗
p−1

and y := gx mod p (where g is a uniform value in Z∗
p), find g, i.e., compute y1/x mod p. If your

answer is “yes,” give a polynomial-time algorithm. If your answer is “no,” show a reduction to
one of the assumptions introduced in this chapter.

4. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol
whereby the adversary ends up sharing a key kA with Alice and a different key kB with Bob,
and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by
sending each other (encrypted) questions that only the other party would know how to answer?

5. Consider the subgroup of Z∗
23 consisting of quadratic residues modulo 23. This group consists of

the following elements: {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. We choose g = 2 to be the generator of
the subgroup. Let (23, 11, 2, x = 4) be the secret key for ElGamal. Find the corresponding public
key. Then encrypt the message m = 3, using randomness r = 6, obtaining some ciphertext c.
Decrypt c to recover m. Do the computations by hand and show your work.

Hint: To speed up your computations, use the fact that 73 ≡ −2 mod 23, 4−1 = 6 mod 23.

6. Consider the following key-exchange protocol:

Common input: The security parameter 1n.
(a) Alice runs G(1n) to obtain (G, q, g).
(b) Alice chooses x1, x2 ← Zq and sends α = x1 + x2 to Bob.
(c) Bob chooses x3 ← Zq and sends h2 = gx3 to Alice.
(d) Alice sends h3 = gx2·x3 to Bob.
(e) Alice outputs hx1

2 . Bob outputs (gα)x3 · (h3)−1.
Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either
prove its security or show a concrete attack).

7. Show that any 2-round key-exchange protocol (that is, where each party sends a single message)
can be converted into a CPA-secure public-key encryption scheme.
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8. Consider the following variant of El Gamal encryption. Let p = 2q + 1, let G be the group of
squares modulo p, and let g be a generator of G. The private key is (G, g, q, x) and the public
key is G, g, q, h), where h = gx and x ∈ Zq is chosen uniformly. To encrypt a message m ∈ Zq,
choose a uniform r ∈ Zq, compute c1 := grmodp and c2 := hr +mmodp, and let the ciphertext
be ⟨c1, c2⟩. Is this scheme CPA-secure? Prove your answer.

9. Recall that the DDH assumption is false in the group G := Z∗
p, of order q = p − 1, where p

is prime. This is due to the fact that the Legendre symbol allows one to check whether or not
x ∈ Z∗

p is a quadratic residue–i.e. a perfect square.

(a) What information is leaked about the message m ∈ G when ElGamal encryption is instan-
tiated with the group G := Z∗

p? Explain your answer.
Hint: Consider using the Legendre symbol to compute whether h = gx, gy, and hy ·m are
quadratic residues. What can be deduced about m? When is this information leaked?

(b) Why does this problem go away when we instantiate El Gamal Encryption with the group G′

of order q′ that contains only the quadratic residues in G where p = 2q′+1 is a strong prime?

10. Assume the Schnorr identification scheme is run in the group Z∗
p , where p is a sufficiently large

prime. Recall that in this case, one can efficiently compute the Legendre symbol of y = gx, gk.
Explain how a verifier can use this information to cause the distribution of s to not be uniform
random. In particular, if x is odd, the verifier can cause s to always be even. Explain why this
would mean that the simulation strategy we gave in class for Schnorr’s algorithm would fail.
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