Section 3.0 3.0.1

18:52 7/28/2011

Chapter 3

Algorithms and Integers

3.1 Algorithms
3.2 Growth of Functions

3.3 Complexity of Algorithms

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.1 Algorithms 3.1.1

3.1 ALGORITHMS

DEF: An algorithm is a finite set of precise
instructions for performing a computation or for
solving a problem.

Example 3.1.1: A computer program is an algo-
rithm.

Remark: From a mathematical perspective, an
algorithm represents a function. The British math-
ematician Alan Turing proved that some functions
cannot be represented by an algorithm.

CLASSROOM PERSPECTIVE

Every computable function can be represented
by many different algorithms. Naive algorithms are
almost never optimal.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.1.2 Chapter 3 Algorithms and Integers

TERMINOLOGY: A good pseudocoding of an
algorithm provides a clear prose representation of
the algorithm and also is transformable into one or
more target programming languages.

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a1, as, ..., a,
Output: largest integer in array

{Initialize} max = a;

For ::=2ton
If max < a; then mazx := a;
Continue with next iteration of for-loop.

Return (maz)

Remark: For a sorted array, there would be a
much faster algorithm to find the maximum. In
general, the representation of the data profoundly
affects both the choice of an algorithm and the exe-
cution time.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.1 Algorithms 3.1.3

Algo 3.1.2: Unsorted Sequential Search

Input: unsorted array of integers aq,as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While 1 < n and x # q;
=1+ 1
Continue with next iteration of while-loop.

If : < n then loc :=1 else loc :=0
Return (loc)

Remark: If the array were presorted into
ascending (or descending) order, then faster
algorithms could be used.

(1) linear search could stop sooner
(2) 2-level search could avoid many comparisons

(3) binary search could divide-and-conquer

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.1.4 Chapter 3 Algorithms and Integers

Algo 3.1.3: Sorted Sequential Search

Input: sorted array of integers a1, as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While : <n and z < qg;
=1+ 1
Continue with next iteration of while-loop.

If (1 <n cand = = a;) then loc := i else loc := 0
Return (loc)

DEF: The logical expression conditional-and

booleanl cand boolean?2

is like conjunction, except that boolean2 is not
evaluated if booleanl is false.

Example 3.1.2: In Algorithm 3.1.3, if 7+ > n then
variable a; does not exist. Since the conditional-
and does not evaluate such an a;, problems are
avoided.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.1 Algorithms 3.1.5

Algo 3.1.4: Two-level Search

Input: sorted array of integers a1, as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 10
{Find target sublist of 10 entries}
While : <n and z < qg;
1 =1+ 10
Continue with next iteration of while-loop.

{Linear search target sublist of 10 entries}
{Initialize} j :=1—9
While j < and z < a;

g:=7+1

Continue with next iteration of while-loop.
If (j <n cand z = a;) then loc := j else loc :=0
Return (loc)

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.1.6 Chapter 3 Algorithms and Integers

Algo 3.1.5: Binary Search

Input: sorted array of integers a1, as, ..., a,
target value x
Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} left := 1;right :=n

While left < right
mid := | (left + right)/2]
If x > a0 then left := mud else right := mid
Continue with next iteration of while-loop.

If © = aj.5+ then loc := left else loc := 0
Return (loc)

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.2 Growth of Functions 3.2.1

3.2 GROWTH OF FUNCTIONS

DEF: Let f and g be functions R — R. Then
f is asymptotically dominated by g if

(K € R) (Vo > K) [f(z) < g(2)]

NOTATION: f < g.

Remark: This means that there is a location
x = K on the x-axis, after which the graph of the
function g lies above the graph of the function f.

BIG OH CLASSES

DEF: Let f and g be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(3C e R)[f = Cy]
NOTATION: f € O(g).

DISAMBIGUATION: Properly understood, O(g) is
the class of all functions that are asymptotically
dominated by any multiple of g.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.2.2 Chapter 3 Algorithms and Integers

TERMINOLOGY NOTE: The idiomatic phrase
“f is big-oh of g”

makes sense if one imagines either
that the word “in” precedes the word “big-oh”,
or that “big-oh of ¢” is an adjective.

Example 3.2.1: 4n? + 21n + 100 € O(n?)
Pf: First suppose that n > 0. Then

4n? + 21n + 100 < 4n° + 24n + 100
< 4(n* + 6n + 25)

< 8n? which holds whenever

n? > 6n + 25, which holds whenever
n? —6n +9 > 34, which holds whenever
n—3> \/3_4, which holds whenever n > 9.
Thus,
(Vn > 9)[4n? + 21n + 100 < 8n?] &
Remark: We notice that n? itself is asymptoti-
cally dominated by 4n* + 21n + 100. However,

we proved that 4n? + 21n + 100 is asymptotically
dominated by 8n?, a multiple of n?.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.2 Growth of Functions 3.2.3

WITNESSES

This operational definition of membership in
a big-oh class makes the definition of asymptotic
dominance explicit.

DEF: Let f and g be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(3C e R) (3K € R) (Vz > K) [f(z) < Cyg(z)]

DEF: In the definition above, the multiplier C' and
the location K on the z-axis after which Cg(x)
dominates f(x) are called the witnesses to the
relationship f € O(g).

Example 3.2.1, continued: The values
C=8 and K=9
are witnesses to the relationship

4n? + 21n + 100 € O(n?)

Larger values of C' and K could also serve as
witnesses. However, a value of C' less than or equal
to 4 could not be a witness.

CLASSROOM EXERCISE

If one chooses the witness C' = 5, then K = 30
could be a co-witness, but KX = 9 could not.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.24 Chapter 3 Algorithms and Integers

Lemma 3.2.1. (x +1)" € O(z").

Pf: Let C be the largest coefficient in the (bino-

mial) expansion of (x + 1)", which has n + 1 terms.
Then

(x4+1)" < C(n+1)z" &

Example 3.2.2: The proof of Lemma 3.2.1 uses
the witnesses

C = <L§J> and K =0

Theorem 3.2.2. Let p(x) be any polynomial of
degree n. Then p(x) € O(z").

Pf: Apply the method of Lemma 3.2.1. &

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.2 Growth of Functions 3.2.5

Example 3.2.3: 100n°> € O(e™). Observing that
n = e™"” inspires what follows.

Pf: Taking the upper Riemann sum with unit-

sized intervals for Inx = fln %"’3 implies for n > 1
thet In(n) < l—|—1—|—~°-|—l
1 2 n

< <1_|_..._|_1>_|_1_|_..._|_l

— o\ 1 5 6 n

< <1_|_..._|_1>_|_1_|_..._|_l

— \1 5 6 6

<54 10

- 6

Therefore, 61lnn < n + 25, and accordingly,

100n° = 100-e°™" < 100"t < 3. ¢"
We have used the witnesses C' = e3? and K =0. <

Example 3.2.4: 2" € O(n!).

Pf:
n times n—1 times
9.9...929.1.9.9...9
<2-1-2-3---n=2n!

We have used the witnesses C =2 and K =0. <

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.2.6 Chapter 3 Algorithms and Integers

BIG-THETA CLASSES

DEF: Let f and g be functions R — R. Then
f is in the class ©(g) (“big-theta of g”)
if f € O(g) and g € O(f).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.3 Complexity 3.3.1

3.3 COMPLEXITY

DISAMBIGUATION: In the early 1960’s, Chaitin and
Kolmogorov used complexity to mean measures
of complicatedness. However, most theoretical
computer scientists have used it in a jargon sense
that means measures of resource consumption.

DEF: Algorithmic time-complexity measures
estimate the time or the number of computational
steps required to execute an algorithm, given as a
function of the size of the input.

TERMINOLOGY: The resource for a complexity mea-
sure is implicitly time, unless space or something
else is specified.

DEF: A worst-case complexity measure
estimates the time required for the most time-
consuming input of each size.

DEF: An average-case complexity measure
estimates the average time required for input of
each size.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.3.2 Chapter 3 Algorithms and Integers

Example 3.3.1: In searching and sorting,
complexity is commonly measures in terms of the
number of comparisons, since total computation
time is typically a multiple of that.

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a1, as, ..., a,
Output: largest integer in array

{Initialize} max = a;

For ::=2ton
If max < a; then mazx := a;
Continue with next iteration of for-loop.

Return (maz)

Big-Oh:
Always takes n — 1 comparisons.

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.3 Complexity 3.3.3

Example 3.3.2:

Algo 3.1.2: Unsorted Sequential Search

Input: unsorted array of integers aq,as, ..., ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While 1 < 2 and x # a;
=1+ 1
Continue with next iteration of while-loop.

If : < n then loc :=1 else loc :=0
Return (loc)

Target in or not in Array:

Worst case takes n comparisons.

Average case takes n/2 comparisons.
Target not in Array:

Every case takes n comparisons.
Big-Oh:

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.34 Chapter 3 Algorithms and Integers

Example 3.3.3:

Algo 3.1.3: Sorted Sequential Search

Input: sorted array of integers ai,as, ..., ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While : <n and z < qg;
=1+ 1
Continue with next iteration of while-loop.

If (1 <n cand = = a;) then loc := i else loc := 0
Return (loc)

Target in or not in Array:
Worst case takes n comparisons.
Average case takes n/2 comparisons.
Big-Oh:

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.3 Complexity 3.3.5

Example 3.3.4:

Algo 3.1.4: Two-level Search

Input: sorted array of integers a1, as, ..., a,
target value x
Output: subscript of entry equal to target value,
or 0 if not found
{Initialize} i := 10
{Find target sublist of 10 entries}
While 7 <2 and z < q;
1 : =14+ 10
Continue with next iteration of while-loop.

{Linear search target sublist of 10 entries}
{Initialize} j :=1—9
While j <:and z < a;

jgi=734+1

Continue with next iteration of while-loop.
If (j <n cand = + a;) then loc := j else loc :=0
Return (loc)

Target in or not in Array:
Worst case takes (n/10) + 10 comparisons.
Big-Oh: Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.3.6 Chapter 3 Algorithms and Integers

To optimize the two-level search, minimize
n
— T
x

as in differential calculus.

—n

5 +1 =0 = x = \/ﬁ
x

Target in or not in Array:

Worst case takes 24/n comparisons.
Big-Oh: Time complexity is in O(y/n).

Increasing to k levels further decreases the
execution time to O({/n),
provided that k£ is not too large.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

Section 3.3 Complexity 3.3.7

Example 3.3.5:

Algo 3.1.5: Binary Search

Input: sorted array of integers ai,as,...,ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} left := 1;right :=n

While left < right
mid := | (left + right)/2]
If x > a,,;4 then left := mud else right := mid
Continue with next iteration of while-loop.

If © = aj.5+ then loc := left else loc := 0
Return (loc)

Target in or not in Array:
Every case takes Ign comparisons.

Big-Oh: Time complexity is in O(lgn).

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

3.3.8 Chapter 3 Algorithms and Integers

COMPLEXITY JARGON

DEF: A problem is solvable if it can be solved by
an algorithm.

Example 3.3.6: Alan Turing defined the
halting problem to be that of deciding whether
a computational procedure (e.g., a program) halts
for all possible input. He proved that the halting
problem is unsolvable.

DEF: A problem is in class P if it is solvable by an
algorithm that runs in polynomial time.

DEF: A problem is tractable if it is in class P.

DEF: A problem is in class NP if an algorithm
can decide in polynomial time whether a putative
solution is really a solution.

Example 3.3.7: The problem of deciding
whether a graph is 3-colorable is in class NP. It
is believed not to be in class P.

coursenotes by Prof. J. L. Gross for Rosen 7th Edition

