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1.1 PROPOSITIONAL LOGIC

Mathematics is used to predict empirical reality,
and is therefore the foundation of engineering.
Logic gives precise meaning to mathematical state-
ments.

PROPOSITIONS

DEF: A proposition is a statement that is either
true (T) or false (F), but not both.

Example 1.1.1:
e 1 +1=2 (T)
e 2 +2=25. (F)
Example 1.1.2: A fact-based declaration is a

proposition, even if no one knows whether it is
true.

e 11213 is prime.
e 1 is prime.

e There exists an odd perfect number.
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Example 1.1.3: Logical analysis of rhetoric be-
gins with the modeling of fact-based natural lan-
guage declarations by propositions.

e Portland is the capital of Oregon.

e Columbia University was founded in 1754 by
Romulus and Remus.

o If 242 = 5, then you are the pope.
(a conditional fact-based declaration).

Example 1.1.4: A statement cannot be true or
false unless it is declarative. This excludes com-
mands and questions.

e (o directly to jail.

e What time is it?
Example 1.1.5: Declarations about semantic to-
kens of non-constant value are NOT propositions.

e X + 2 = 5.
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TRUTH TABLES

DEF: The boolean domain is the set {7, F'}.
Either of its elements is called a boolean value.
An n-tuple (p1,...,pn) of boolean values is
called a boolean n-tuple.

DEF: An truth table for an operator g on n-tuples
specifies the value g (x1,22,...,2,) as T or F for
every boolean n-tuple (x1,z2,...,Z,).

DEF: The following truth table defines the operator
(on 1-tuples) called negation:

P[P
T|F
FIT

In other words, the negation of a proposition has
the opposite truth value from the proposition itself.

DEF: A propositional operator is a rule defined
by a truth table.

DEF: An operator is monadic if it has only one
argument. It is dyadic if it has two arguments.

Example 1.1.6: Thus, negation is a monadic
operator.
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Example 1.1.7: The negation operator can be
used to model the following constructions:

e [t is not sunny.

o 242 #5.

DEF: The following truth table defines the dyadic
propositional operator called conjunction:

P a|p~ag
T T| T
T F| F
F T| F
F F| F

Example 1.1.8: The word “and” is modeled by
conjunction:

e It is sunny and I am going to the beach.

Proposition 1.1.1. The total number of proposi-
tional operators on n arguments is 2% .

Pf: The number of boolean n-tuples is 2. Thus,
the number of rows in a truth table for a proposi-
tional operator on n arguments is 2. The truth
value (in the right hand column) of each boolean
n-tuple has two possibilities. %
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Corollary 1.1.2. There are 4 = 2°? monadic
propositional operators.

Corollary 1.1.3. There are 16 = 22" dyadic
propositional operators.

Example 1.1.9: There are only four monadic
propositional operators: Identity, Negation,
Constant-True, and Constant-False.

DEF: The following truth table defines the dyadic
propositional operator called disjunction:

P g|pVvq
T T| T
T F| T
FT| T
F F| F

The disjunction is true if either (or both) of its
component clauses is true.

Example 1.1.10: Disjunction models “or”:
e It is rainy or Sweetums goes to the beach.

This sentence is TRUE if Sweetums goes to the
beach in the rain. It is false only if Sweetums does
not go to the beach on a non-rainy day.
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DEF: Exclusive or is true if one and only one of
its component clauses is true:

P q|p®q
T T| F
T F| T
FT| T
F F| F

Exclusive or is GOOD for modeling binary addi-
tion. It is BAD for modeling “or” in English.

Example 1.1.11: When taking a Discrete Math
exam, students should know everything that is in

the assigned readings from the Rosen text or that
was taught in class.
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CONDITIONAL OPERATOR

DEF: This truth table defines the dyadic operator
called the conditional a.k.a “implies”:

P a|p—q
T T| T
T F| F
FT| T
FF| T

In the form p — ¢, the proposition to the left of
the conditional operator (in this case, p) is called
the antecedent, and the proposition to the right
(in this case, q) is called the consequent.

The conditional operator is best understood as a
CONTRACT.

Example 1.1.12: The assertion “If the Yankees

win the World Series, then they give Lou Gehrig a
$1,000 bonus” is of the form p — ¢:

p: Yankees win World Series
q: Yankees give Gehrig a $1,000 bonus.

What circumstance would allow Gehrig to win a
breach-of-contract suit against the Yankees?
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Example 1.1.13: Conditional propositions.
o If 24+ 2 =4, then Albany is the capital of NY.
o If 2+ 2 =4, then Peapack is the capital of NJ.

o If 242 =5, then there is a state with only one
neighbor.

o If 24 2 =5, then you* are the pope.

DISAMBIGUATION: Premises and conclusions are
parts of logical arguments. We disambiguate them
from “antecedent” and “consequent”.

o “Hypothesis” is already an overloaded term.

DEF: The following truth table defined the dyadic
operator called the biconditional:

P a|peq
T T| T
T F| F
F T| F
FF| T

* N.B. Technically, “you” is a variable.
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COMPOUND PROPOSITIONAL FORMS

DEF: A propositional variable is a variable such
as p,q,r (possibly subscripted, e.g. p;) over the
boolean domain.

DEF: An atomic propositional form is either a
boolean constant or a propositional variable.

DEF: A compound propositional form is de-
rived from atomic propositional forms by applica-
tion of propositional operators. Monadic operators
are evaluated first, and otherwise, precedence is
indicated by parentheses.

DISAMBIGUATION: A “proposition” is an instance
of a propositional form. Careful terminological dis-
tinction is temporary.

Example 1.1.14: Some compound propositional
forms on two variables: pVq,pAq, pDq, p — q,

p<q, (pV—q) —q.

Example 1.1.15: If you don’t repay the
Friendly Loan Company, then you will get a call
from the Unfriendly Collection Agency.

P —q.
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Any compound propositional form can be eval-

uated by a truth table

Example 1.1.16: (pV —q) — ¢

Chapter 1

—q|pv—q|(Pv-Q—9g

m T+ Ho
m 4 m o

Logic and Proofs

Example 1.1.17: From Quiz 1 in Fall 1994:
Analyze (p A =(r = —q)) with a truth table.

SOLUTION

=g r— - —|(I’ — —|q)

P A —|(I’% —|q)

T

MmTAmTm A -4 o H|O
M7+ 7T - -Hla
M7 o7 < 7 =

4 4 T T+ T
4 4 4 m A4
M M M 4 T T T
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Example 1.1.18: §1.1 Exer 60: solve a crime.
Alice: Carlos did it. Carlos: Diana did it.
Diana: Carlos is lying. John: I didn’t do it.

Oracle: Only one of them is telling the truth.
Problem: Who did it?

METHOD 1: modified truth table. Find the row
in which only one statement is true.

Alice: Carlos: Diana: John:

perpetrator | "C" "D" "—D" "
Alice F F T T
Carlos T F T T
Diana F T F T
John F F T F

METHOD 2: sequential analysis.

(1) If Alice is telling the truth, then so is John.
Thus, Alice is lying, which implies that Carlos did
not do it.

(2) Similarly, if Carlos is telling the truth, then so
is John. Thus, Carlos is lying, which implies that
Diana did not do it.

(3) By (2), Diana must be telling the truth.

(4) By (3), John is lying. Thus, John did it.
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1.3 LOGICAL EQUIVALENCES

Logical equivalences occur in mathematical proofs.
They are also useful in simplifying loop-exit condi-
tions in computer programs.

DEF: Two propositional forms on the same vari-
ables are (logically) equivalent if they have the
same result column in their truth tables.
NOTATION: F & G.

DISAMBIGUATION: The biconditional <+ is an
operator. Logical equivalence < is a relation on
propositions.

Example 1.3.1: -pVqg&p—gq
—P | PVg:p—¢

m T+ Ho
m 4 m o
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CONTRAPOSITIVE, etc.

DEF: The contrapositive of a proposition of the
form p — ¢ is the proposition of the form

Proposition 1.3.1. The contrapositive of p — q is
logically equivalent to p — q.

Pf: .
P d|-9|-P:ipP—>q —gq—>—Pp
T T|F | F . T T
TF|T|F F F
FT|F T T T
FFITIT T T

Example 1.3.2:

e conditional p — ¢: If it is sunny, then you can
find me at the beach.

e contrapositive ~qg — —p: If you can’t find me
at the beach, then it is not sunny.
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DEF: The converse of a proposition of the form
p — q is the proposition of the form

q—p

DEF: The inverse of a proposition of the form
p — q is the proposition of the form

Example 1.3.3:

e conditional p — ¢: If it is sunny, then you can
find me at the beach.

e converse ¢ — p: If you can find me at the
beach, then it is sunny.

e inverse -p — —q: If it is not sunny, then you
can’t find me at the beach.

Proposition 1.3.2. The converse and the inverse
are equivalent to each other, but not to the original
conditional.

Pf: Left to the reader. &
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CATEGORIES of PROPOSITIONAL FORMS

DEF: A tautology is a propositional form that is
always true, no matter what truth values are as-
signed to its variables.

DEF: A self-contradiction is a propositional form
that is always false, no matter what truth values
are assigned to its variables.

DEF: A contingency is a propositional form that
is neither a tautology nor a contradiction.

DISAMBIGUATION: The word “contradiction” means
two propositions with opposite truth values. See

§1.5, §1.6.

Prop 1.3.3. A propositional form is a tautology
iff it is equivalent to the constant T .

Pf: This is simply a rephrasing. &

Proposition 1.3.4. A propositional form is a self-
contradiction iff it is equivalent to the constant F'.

Pf: This is a rephrasing. &
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LAWS of LOGIC

Various logical equivalences and tautologies
have earned the honorific appelation law.

DEF: Double Negation Law: ——p < p.

p|=Pi—(=p)
T|F: T
FIT: F

DEF: Law of the Excluded Middle: pV —p.

p|-pipVv(=p)
T[F @ T
FI T T

AVOIDING BOREDOM

First Law of Good Pedagogy: Boredom does
not help anyone to learn.

Example 1.3.4: Table 5 of §1.2 (de Morgan, as-
sociativity, etc.) is excellent for self-study, but not
for exhaustive classroom presentation.
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1.4 PREDICATES & QUANTIFIERS

DEF: Informally, a predicate is a statement about
a (possibly empty) collection of variables over vari-
ous domains. Its truth value depends on the values
of the variables in their respective domains.

DEF: Formally, a predicate is a function from the

cartesian product of the domains of the variables
to the boolean set {T', F'}.

Example 1.4.1: x+2=25.
Example 1.4.2: 4z — 3y > 2z.

DEF: The universal quantification (over x) of a
predicate P(z) is the predicate (Va)[P(x)].

Example 1.4.3: (Vx)[x +2=15].
Example 1.4.4: (Vx)[4z — 3y > 2z].
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DEF: The existential quantification (over x) of
a predicate P(z) is the predicate (dz)[P(z)].

Example 1.4.5: (dx)[x +2=15].
Example 1.4.6: (Jx)[4x — 3y > 2z].

Remark: Observe that the result of quantifying
a predicate is still a predicate. Moreover, when
propositional operators are applied to predicates,
the results are predicates.

VARYING THE DOMAIN

Example 1.4.7: (Va)[z? = 1] is FALSE over the
integers, but TRUE over the domain {—1,1}.

Example 1.4.8: (Jx)[z? = —9] is FALSE over
the integers, but TRUE over the domain of
complex numbers.
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CLASSROOM EXERCISE

Consider these two condition statements.
1. (Vz)[P(x)] — (3x)[P(x)].

Over the domain of people, this would mean “If
something is good for everybody, then it’s good for
somebody.”.

2. (B)[P(x)] = (Va)|[P(z)].

Over the domain of people, this could mean
“What’s good for me is good for everybody.”.

Try to think of a general property of a domain un-
der which statement (1) is necessarily FALSE.

Try to think of a general property of a domain un-
der which statement (2) is necessarily TRUE.

Hint: These general properties are based solely on
the number of elements in the domain.
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SCOPE of QUANTIFIERS

DEF: The scope of a quantifier is the clause to
which it applies.

Example 1.4.9: Let x range over the integers.
P(x):x > 2 Qlz):x <2

Compare these two non-equivalent propositions:
A. (Jz)[P(x) A Q)]
B. (32)[P(@)] A (30)[Q(x)

A is FALSE, but B is TRUE.

DEF: An unbound variable in a predicate is a
variable not within the scope of any quantifier.

Example 1.4.10: x is an unbound variable.
r+4>2

Example 1.4.11: x is an unbound variable.
(Vy)[22z + 3y = 7]

Remark: A predicate with no unbound
variables is a proposition.
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NEGATION with QUANTIFIERS

p: There exists some input data for which this
program will crash.

—p: No matter what input data you supply to this
program, it will not crash.

Rule 1: —=(32)[P(z)] & (Va)[-P(x)]
Rule 2: =(Vx)[P(x)] < (Jz)[-P(x)]

CLASSROOM EXERCISE

On a New Jersey Transit commuter run, the
conductor announces:

At the next stop, all doors will not be open.

Express this in symbolic logic.

Explain what his words mean.

What words accurately express what he probably
intended?
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1.5 NESTED QUANTIFIERS

Example 1.5.1: Every sophomore owns a
computer or has a friend in the junior class who
Owns a computer.

Domains S and J are the sets of sophomores and
juniors. Predicates C'(u) and F'(v,w) mean that u
owns a computer and that w is a friend of v.

(Ve € $)[Clx) v (3y € D[F(x,y) A CW)]).

DISAMBIGUATION: Specify the domain when not
evident from context. Use brackets to identify
scope of quantifiers.

The text calls this a quantifier with restricted
domain. The text uses slightly different notation.

The important issue is that the notation should
be self-explanatory to anyone familiar with the
underlying concept.
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TRANSPOSING QUANTIFIERS

Be careful about transposing different kinds of
quantifiers.

o (Va)(Jy)[x* < y] is true.
o (Jy)(Vx)[x? < y] is false.

However, you can safely transpose two quantifiers
of the same kind.
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RECALL NEGATION with QUANTIFIERS

p: There exists some input data for which this
program will crash.

—p: No matter what input data you supply to
this program, it will not crash.

Rule 1: —=(32)[P(z)] & (Va)[-P(x)]
Rule 2: =(Vx)[P(x)] < (Jz)[-P(x)]

CLASSROOM EXERCISE

Write the negation of this statement
(V) (Fy)[2* < y]

so that no negation (—) appears to the left of a
quantifier.

~(Va)(Jy)[z® <y =
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OPTIONAL CLASSROOM EXERCISE

An exercise about varying the subdomain from
within the set of all people.

B(x,y) : y is the brother of x (predicate)

Specity a subdomain — maximal, if possible — in
which each of the following assertions is TRUE.

1. (Vz)(Vy)|[B(z,y) — Bly, z)].

For any two persons Bill(x) and George(y),
if George(y) is a brother of Bill(x),
then Bill(x) is the brother of George(y).

2. (3z)(Vy)[B(z,y) = By, z)].

There is a person who is a brother to each of his
brothers.

3. (Vz)(Jy)[B(z,y) = By, z)].

Every person has a brother to whom that person is
also a brother.

4. (3x)(Jy)[B(x,y) = B(y,v)].
There exist two persons, Bill (x) and George (y),

such that if George is Bill’s brother, then Bill is
George’s brother.
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1.6 RULES OF INFERENCE

Some forms of argument (“valid”) never lead from
correct statements to an incorrect conclusion. But
some other forms of argument (“fallacies”) can lead
from true statements to an incorrect conclusion.

DEF: An axiom is a statement that is given as
true, or in the case of a mathematical system,
is used to specity the system.

DEF: A mathematical argument is a list
of statements. Its last statement is called the
conclusion.

DEF: A logical rule of inference is a method
that depends on logic alone for deriving a new
statement from a set of other statements.

DEF: A mathematical rule of inference is a
method for deriving a new statement that

may depend on inferential rules of a mathematical
system as well as on logic.
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VALID ARGUMENTS

DEF: A logical argument consists of a list of
(possibly compound) propositions called premises
and a single proposition called the conclusion.

Example 1.6.1: A Logical Argument
If I dance all night, then I get tired.
I danced all night.
Therefore I got tired.

Logical representation of underlying variables:
p: I dance all night.  ¢: I get tired.

Logical analysis of argument:

P —q premise 1
D premise 2
q conclusion

DEF: A form of logical argument is valid if
whenever every premise is true, the conclusion is
also true. A form of argument that is not valid is
called a fallacy.

We shall see why the argument above is valid.
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This form of argument is called modus ponens.

P —q premise 1
P premise 2
q conclusion

Operational Method of Validation

Step 1. Form a truth table in which the premises
are columns, and the conclusion is the last column.

Step 2. Star every row in which all the premises
are true.

Step 3. Declare the argument to be valid if every
starred row has a T in its last column (the conclu-
sion column).

p a|p—q pjq *
T T| T T T *
T F| F TF
FT| T F|.T
FF|l T FF

Having once verified modus ponens with truth ta-
bles, we need never question its validity again.
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FALLACIES

Example 1.6.2: A Fallacy

Logic and Proofs

If I dance all night, then I get tired.

I got tired.
Therefore I danced all night.

Logical form of argument:

P —q premise 1
q premise 2
P conclusion

Now for the validity check.

p a|p—q qjp *
T T| T T T *
T F| F FI|T
FT| T T F =
FF|l T FF

Row 3 indicates it is possible that even when all
the premises are true, the conclusion can be false.
Thus, this form of argument is a fallacy.
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NOTORIOUS FALLACIES

In the fallacy of aftirming the consequent, one
affirms the consequent of a conditional and con-
cludes that the antecedent is true.

[(p—=q)ANgl =D

Example 1.6.2 affirms the consequent.

In the fallacy of denying the antecedent, one
denies the antecedent of a conditional and con-
cludes that the consequent is false.

[(p = @) A—p] = g
Example 1.6.3: Denying the Antecedent
She says:

Even if you were the last man on earth,
I would not marry you.

He thinks:
But I am not the last man on earth,
and that implies that she will marry me.

I'll keep on trying.
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VALIDITY and TRUTH

(1) The conclusion of a valid argument might be
false, if one or more of the premises is not true.

(2) The conclusion of a fallacy might be true.

(3) If the premises are correct, and if the argument
is valid, then the conclusion is correct.

LOGICAL RULES of INFERENCE

TERMINOLOGY NOTE: A rule of inference is de-
fined to be any valid argument. Typically, however,
it is only called a valid argument unless it is fre-
quently applied.

All of the following rules of inference can be con-
firmed with truth tables.

Modus Ponens.

P —q premise 1
P premise 2
q conclusion

Modus Tollens.

P —q premise 1
—q premise 2
—p conclusion
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Addition.
P premise 1
pVq conclusion
Simplification.
pAq premise 1
P conclusion

Disjunctive Syllogism.

pVq premise 1
—p premise 2
q conclusion

Hypothetical Syllogism.

P —q premise 1
q—T premise 2
p—r conclusion
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1.7 INTRODUCTION TO PROOFS

This section of the Rosen test discusses the con-
nection between the formal methods of proof de-
scribed in §1.6 and the informal proofs that are
given most of the time in textbooks and classroom
presentations. Nearly all proofs in archival mathe-
matical research journals are informal.

TWO FAMOUS PROBLEMS

Fermat’s Last Thm: For n > 2, the equation
has no solutions for non-zero integers a, b, c.
Status: Proved by Andrew Wiles.

Goldbach Conjecture: Every even number 2n
larger than 4 is the sum of two odd primes.
Status: Open.

Example: 98 = 194 79
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MATHEMATICAL PROOFS (DIRECT)

DEF: A direct proof is a mathematical argument
that uses rules of inference to derive the conclusion
from the premises.

Example 1.7.1: Alt Proof of Disj Syllogism:
by a chain of inferences.

pVq premise 1

——pVqg double negation law

-p—>q —"AVB<& A— B (use A= -p)
—p premise 2

q conclusion by modus ponens

Example 1.7.2: a theorem
The sum of two even numbers x and y is even.

Pf: (1) There exist integers m and n such that
r = 2m and y = 2n (by def of “even”).

(2) Then x + y = 2m + 2n (by substitution).
= 2(m 4+ n) (by left distrib)

which is even, by the defn of evenness. &
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MATHEMATICAL PROOFS (INDIRECT)

DEF: An indirect proof uses rules of inference on
the negation of the conclusion and on some of the
premises to derive the negation of a premise. This
result is called a contradiction.

Example 1.7.3: a theorem
If 22 is odd, then so is z.

Pf: Assume that x is even (neg of concl).
Say x = 2n (defn of even).
Then 22 = (2n)? (substitution)
= 2n - 2n (defn of exponentiation)
= 2-2n? (commutativity of mult.)
which is an even number (defn of even)

which contradicts the premise that 22 is odd. &
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TERMINOLOGY

DEF: A mathematical proofis a list of
statements in which every statement is one of the
following:

(1) an axiom

(2) derived from previous statements by a rule of
inference

(3) a previously derived theorem

Its last statement is called a theorem.

TERMINOLOGY: There is a hierarchy of terminol-
ogy that gives opinions about the importance of
derived truths:

(1) A proposition is a theorem of lesser general-
ity or of lesser importance.

(2) A lemma is a theorem whose importance is
mainly as a key step in something deemed to
be of greater significance.

(3) A corollary is a consequence of a theorem,
usually one whose proof is much easier than
that of the theorem itself.
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1.8 PROOF STRATEGY

FORWARD AND BACKWARD REASONING

Example 1.8.1: Backward Reasoning

b
Let a,b > 0, with a # 0. Then (a—2|— ) > Vab.

Pf: Conclusion is true if a + b > 2v/ab,

which is true if (a + b)* > 4ab,

which is true if a® + 2ab + b* > 4ab,

which is true if a? — 2ab + b* > 0,

which is true if (a — b)? > 0, which is true. &

Example 1.8.2: Forward Reasoning
Let n € N, such that n is not divisible by 2 or 3.
Then n? — 1 is divisible by 24.

Pf: Since n is not divisible by 2 or 3,

it follows that n = 6k + 1 or 6k + 5.

Case 1. (6k + 1) — 1 = 36k? + 12k mod 24

= 12k? + 12k = 0 mod 24, since 2 divides k* + k.
Case 2. (6k +5)? — 1 = 36k + 60k + 24 mod 24

= 12k? 4+ 12k = 0 mod 24, as above. &
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1.8.2 Chapter 1 Logic and Proofs

MATHEMATICAL PROOFS (by CASES)

DEF: A proof by cases uses the following rule of
inference:

p—T premise 1
q—T premise 2
pVq premise 3

r conclusion

Example 1.8.3: a theorem
Let z be any integer. Then 2? 4 z is even.

Pf: setup for proof-by-cases inference
p:xiseven; q:xis odd; r: x? + 2 is even.

Verity premise 1. If x is even, then x = 2n, for
some integer n. Hence,

4+ = (2n)* 4+ 2n = 4n° + 2n
which is even.

Verity premise 2. If x is odd, then * = 2n + 1,
for some n. Hence,

v +r=02n+1)7+(2n+1)
=(4n° +4n+1)+ (2n+1)
= 4n* + 6n + 2
which is even.

Verity premise 3: An arbitrary integer is either
even or odd. &
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PROVING QUANTIFIED ASSERTIONS

(1) To prove (Vx)|P(x)]
Let x be an arbitrary (unrestricted) member of the
universal set of context, and show P(x) is true.

Example: Show that 2 + z is even, for all z.
(2) To prove (3x)|P(x)]

Exhibit any member of the universe for which P(x)
is true. One example suffices.

Example: Show that 729 is a power of 3, that is,
(In)[3™ = 729].

(3) To prove =(Vz)[P(x)]
Exhibit any member of the universe for which P(x)
is false. One counterexample suffices.

Example: Show that 323 is not prime.
(4) To prove —(3x)[P(x)]

Let x be an arbitrary (unrestricted) member of the
universal set of context and show P(x) is false.

Example: Show that v/2 is irrational, that is,

~(3p, q) [\/5 = g]
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1.9 LOGIC SUPPLEMENT

PROPOSITIONS

Example 1.9.1: Opinions are NOT propositions.

e Millard Fillmore was our greatest President.

Example 1.9.2: Ambiguities of meaning often
obscure whether or not a sentence is a proposition.

e Who's on first. (comedy routine)

e Smith was guilty.

Propositional interpretations:
(1) Smith actually committed the offense.
(2) Smith was convicted.
Nonpropositional interpretation:
(3) an opinion about moral culpability:

“A person who sincerely believes in something
simply is not guilty.” (This redefines guilt to
mean insincerity. Exercise: define sincerity.)
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TIME OUT to discuss OBSCENITY

You will not be tested on the following material.

DEF: An obscenity is a word or phrase that has
been proscribed from polite conversation.

Example 1.9.3: Two four-letter obscenities:
e Ain’t is an English-language obscenity.
e GOTO is a programming obscenity.

e Pronouncing GOTO as two words is a further
obscenity.

Remark: Some words have both a polite mean-
ing and an obscene meaning. (Exercise: list 20
such words.) Sometimes one subculture regards

a meaning as an obscenity, while another thinks it
perfectly polite usage.

Example 1.9.4: Saying only “Columbia” to
refer to any educational institution other than
the real Columbia is obscene. The right people
use phrases such as “Columbia College in Who-
KnowsWhere” that acknowledges the primary
meaning of “Columbia”.
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CONCLUSION: Saying only “or” to refer to
exclusive-or is regarded as obscene in the tech-
nological subculture. The right way to express
exclusive-or is to say “X or Y but not both”, be-
cause inclusive-or is the primary meaning.

TERMINOLOGY NOTE: If a phrase is ambiguous or
has some other easily described fault, then we just
specity the fault. The epithet “obscenity” is re-
served for usage we don’t like but can’t say why
not.

DISAMBIGUATION: Implication is a relation on
statements, and not an operator. It’s okay to say
“p implies q” for p — ¢, but not to write it.
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