Cryptography

Lecture 6

Announcements

HW2 due Wednesday, 2/15

Agenda

- Last time:
 - Indistinguishability in the presence of an eavesdropper (K/L 3.2)
 - Defining PRG (K/L 3.3)
- This time:
 - Constructing computationally secure SKE from PRG (K/L 3.3)
 - Security Proof (K/L 3.3)
 - Class Exercise on PRG's

Pseudorandom Generator (PRG)

- Functionality
 - Deterministic algorithm G
 - Takes as input a short random seed s
 - Ouputs a long string G(s)
- Security
 - No efficient algorithm can "distinguish" G(s) from a truly random string r.
 - i.e. passes all "statistical tests."
- Intuition:
 - Stretches a small amount of true randomness to a larger amount of pseudorandomness. 6(s) has input length IS/ to again then
- Why is this useful?
 - We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \ge |M|$.
 - I.e. we will build a computationally secure encryption scheme with |K| < |M|

Pseudorandom Generator (PRG)

Ideal World

 $r \in \{0,1\}^{\ell(n)}$

Truly random bit string *r* of length $\ell(n)$ is sampled and given to D.

Real World

 $s \in \{0,1\}^n, G(s)$ 5119

Truly random bit string s of length n is sampled. G(s) is given to D.

y= r = 6(s), 151=n.

PRF: Any efficient D cannot tell which world it is in. (6(5)) =

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le negligible$$

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $S \in \{0,1\}^n$ algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

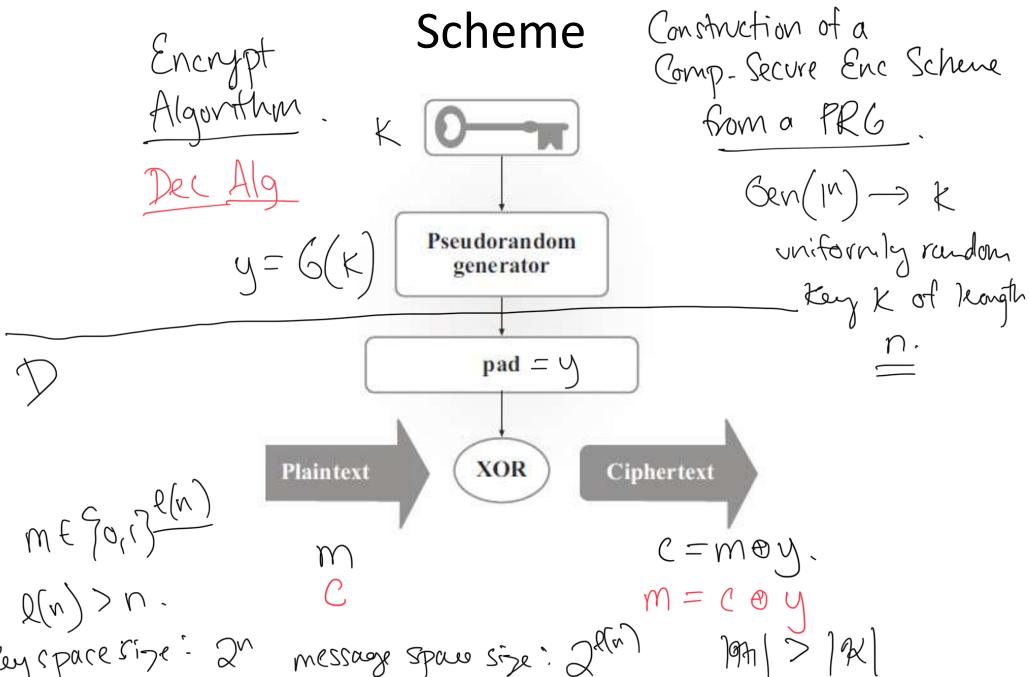
$$\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le negl(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

Constructing Secure Encryption Schemes

A Secure Fixed-Length Encryption



The Encryption Scheme

Let G be a pseudorandom generator with expansion factor ℓ . Define a private-key encryption scheme for messages of length ℓ as follows:

- Gen: on input 1^n , choose $k \leftarrow \{0,1\}^n$ uniformly at random and output it as the key.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext

$$c \coloneqq G(k) \oplus m$$
.

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, output the plaintext message

$$m \coloneqq G(k) \oplus c$$
.

Theorem: If \widehat{G} is a pseudorandom generator, then the Construction above is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper. High kuel: Proofs key reductions (79) If the construction is NOT secure then

Indistinguishability in the presence of an eavesdropper

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A and there exists a negligible function negl such that $\Pr\left[PrivK^{eav}_{A,\Pi}(n)=1\right] \ge \frac{1}{2} + \frac{1}{negl}(n),$

$$\Pr\left[PrivK^{eav}_{A,\Pi}(n) = 1\right] \ge \frac{1}{2} + \frac{1}{negl}(n),$$

Where the prob. Is taken over the random coins used by A, as well as the random coins used in the experiment.

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

(Expansion:) For every n it holds that $\ell(n) > n$. (Pseudorandomness:) For all ppt distinguishers D, there \mathcal{D} exists a negligible function $p \in \mathcal{A}$ such that:

 $\Pr[D(r) = 1] - \Pr[D(G(s)) = 1] | \text{ negt}(n),$ where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

gros - Build a distinguisher D. oit of a adversey A y=r or y=6(c)

Specity: I. How does D generate c ("challege") a. choose b & 50,13 b. output C= mb = 4 2. Upon receiving b' from A, what does Doutput a. Check if b'=b 7-1 ges, oct prt 1 o/w ortput 0.

 $Pr\left(D(6(s))=1\right)=Pr\left(PrivK_{A,TT}^{eav}(n)=1\right)$ by assumption $\geq \frac{1}{2}+P(n)$ (p is non-may) $Pr(D(r) = 1] = \frac{1}{2}$ (bic it is a one-time pad).

 $Pr\left(D(r)=1\right)-Pr\left(D(G(s))=1\right)\geq p(n)$ p(n) is non-regligible by user-ption.

Proof by reduction method.

Proof: Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRG.

Distinguisher *D*:

- D is given as input a string $w \in \{0,1\}^{\ell(n)}$.
- 1. Run $A(1^n)$ to obtain messages $m_0, m_1 \in \{0,1\}^{\ell(n)}$.
- 2. Choose a uniform bit $b \in \{0,1\}$. Set $c := w \oplus m_b$.
- 3. Give c to A and obtain output b'. Output 1 if b' = b, and output 0 otherwise.

Consider the probability D outputs 1 in the case that w is random string r vs. w is a pseudorandom string G(s).

- When w is random, D outputs 1 with probability exactly $\frac{1}{2}$. Why?
- When w is pseudorandom, D outputs 1 with probability $\Pr\left[PrivK^{eav}_{A,\Pi}(n)=1\right]=\frac{1}{2}+\rho(n)$, where ρ is non-negligible.

D's distinguishing probability is:

$$\left|\frac{1}{2} - \left(\frac{1}{2} + \rho(n)\right)\right| = \rho(n).$$

This is a contradiction to the security of the PRG, since ρ is non-negligible.