Cryptography

Lecture 20

Announcements

• HW 7 due 4/26

Agenda

- Last time:
 - Number theory
 - Hard problems (Factoring, RSA)
- This time:
 - More number theory (cyclic groups)
 - Hard problems (Discrete log and Diffie-Hellman problems)
 - Elliptic Curve groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$g^{m} = 1 = g^{0}$$

$$\langle g \rangle = \{g^0, g^1, ..., g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider
$$Z^*_{13}$$
: order of $\mathbb{Z}^*_{\mathcal{B}}$ - \mathbb{Z}^*

2 is a generator of Z^*_{13} :

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
2 ⁴	16 → 3
2 ⁵	6
2 ⁶	12
27	24 → 11
28	22 → 9
2 ⁹	18 → 5
210	10
2 ¹¹	20 → 7
2 ¹²	14 → 1

3 is not a generator of Z^*_{13} :

			13	
30	1			١
3 ¹	3		3	3/12
3 ²	9			(
33	27 →1	1		
34	3			
3 ⁵	9	V		
36	27 → 1	1		
37	3		Q ,,	mad 8 0
38	9	J	30'	nod 3 = 32
39	27 → 1	1		
3 ¹⁰	3			
3 ¹¹	9			
3 ¹²	27 → 1			

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$. And the consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

Mi G finite group of ordum, ge 6. Let i be the order of g, then im. Proof. g'=1 (since: irondr of g) gm = 1 (ky gweralized theoren) \Rightarrow $g' = g^m \Rightarrow i = m \text{ mod } i \text{ by Prop 2}.$ =) i) (m-i) by def of modulo. => '\m (since '\'1).

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 2, we have that $0 \equiv m \mod i$
- By definition of modulus, this means that i|m.

Corollary: if \underline{G} is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z^*_p is a cyclic group of order p-1.

There exists a generator $g \in \mathbb{Z}_p^*$ to the construct of \mathbb{Z}_p^* to \mathbb{Z}_p^*

Prime-Order Cyclic Groups

Consider $Z^*_{(p')}$ where \underline{p} is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z^*_p is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in $Z^*_{\ p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} .

Note that 11 is a strong prime, since $11 = 2 \cdot (5) + 1$.

g=2 is a generator of Z^* 11:

2 ⁰	1		
2^1	2		
2 ²	4		
2^3	8		
24	16 →(5)		
2 ⁵	10		
2 ⁶	20 → 9		
27	18 → 7		
28	14 →(3)		
29	6		

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of Z^*_n are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}$ =

Verify:

Que and production in the exponent.

- Addition of two even numbers mod p-2 gives an even number mod p - 1, since for prime p > 3, p - 1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem (\mathcal{V})

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G,q,g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.

 2. Choose a uniform $h \in G$ 3. A is given G, q, g, h and outputs $x \in Z_q$
- - 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise. $\{9^0, 9^1, (9^{\times}), (9^{\times}), (9^{\times})\}$ $\chi \in \mathbb{Z}_q$

Definition: We say that the DL problem is hard relative to G if for all ppt algorithms A there exists a negligible function negsuch that

$$\Pr[DLog_{A,G}(n) = 1] \leq neg(n)$$
.

The Diffie-Hellman Problems

Diffie-flellman

The CDH Problem

Given (G,q,g) and uniform $h_1=g^{x_1},h_2=g^{x_2},$ compute $g^{x_1\cdot x_2}$.

Give:
$$(6,9,9)$$
 $h_1 = 9^{x_1}$, $h_2 = 9^{x_2}$
Good: Compute $9^{x_1 \cdot x_2} = (h_1)^{x_2} = (9^{x_1})^{x_2} = 9^{x_1 \cdot x_2}$

Break Dlog > Break CDH?

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A(G, q, g, g^x, g^y, g^y, g^{xy}) = 1]| \le neg(n).$$

DDH problen completely broken \mathbb{Z}_p^{\times} , p prime different group: subgroup of quadratic residues in Zg, p strong prime. Breaking DDH -> Breaking CDH. CDH is beleived hand in Rp, DDH is eary. Why can youbreak DDH in Rip? Legendre symbol an efficient way to check whether h ∈ RP is a quadratic residue. h=l² for some l∈ R*p. gis a guerator of R*p $\left(h_1, h_2, h_3\right)$ (g^{x}, g^{y}, g^{xy}) $\left(3^{x}, 9^{y}, 9^{2}\right)$ quad? QR? QR 0 0 0 1 1 0 0

Relative Hardness of the Assumptions

Breaking DLog → Breaking CDH → Breaking DDH

DDH Assumption → CDH Assumption → DLog Assumption