Cryptography

Lecture 20



Announcements

 HW 7 due 4/26



Agenda

* Last time:
— Number theory
— Hard problems (Factoring, RSA)

* This time:
— More number theory (cyclic groups)

— Hard problems (Discrete log and Diffie-Hellman
problems)

— Elliptic Curve groups



Cyclic Groups

For a finite group G of order m and 9 € G,
consider: 4 ﬂM e

(9)=1{9°9% ., g™}
(g) always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the
above list.

Thus (g) may be a subgroup of order smaller than
m.

If (g) = G, then we say that G is a cyclic group and
that g is a generator of G.
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Examples
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Consider Z= i orde ot L

2 is a generator of Z~ )

g

3 is not a generator of Z* 1
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Definitions and Theorems

Definition: Let G be a finite group and g € G. The order
of g is the smallest positive integer i such that gt = 1. = s ordn

Ex: Consider Z;{5. The order of 2 is 12. The order 0f U

of 3 is 3. Sk roup
%uem%w{bg
Proposition 1: Let (¢ be a finite group and g € G an 2

element of order i. Then for any integer x, we have g* =
gx mod L

Proposition 2: Let (¢ be a finite group and g € G an
element of order i. Then g* = g” iff x = y mod 1.
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More Theorems

Proposition 3: Let G be a finite group of order m and g € G an element of
order i. Theni |m.

Proof:
0

* We know by the generalized theorem of last class that g™ =1 = g°.

* By Propesition 2, we have that 0 = m mod i
* By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of
G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z* . is a cyclic group of order p — 1. N

Tt erste o Guatlon g« Z%?



Prime-Order Cyclic Groups

Consider Z*@whereﬁis a strong prime.
* Strong prime: p = 2q + 1, where q is also
prime. S

e Recall that Z* . iIs a cyclic group of order p —
1 = 2q.
Lok Squond.
< ™ 0(
The subgroup of quadratic residues in Z~ . IS a
cyclic group of prime order q.



Example of Prime-Order Cyclic Group

Consider Z* N““
Note that 11 IS a strong prime, since 11 = 2 6+ 1.

@s a generator of Z* ”

20 1 The even powers of g are the “quadratic residues” (i.e. the perfect

71 2 squares). Exactly half the elements of Z~ ,are qguadratic residues.

22 (%)

23 8 Note that the even powers of g form a cyclic subgroup of order —1

24 | 16 —>® q. (Q _ Qcp - N YV\o(i‘ @ Q\/be/\ V\Q/\/\szQLA

25 10 ' ;)

26 || _)@ Verify: z, (SU/J&/\ O M /3)
closure (Multiplication translates into addition in the exponent.

27 | 187 — .

- Addition of two even numbers mod p — 2 gives an even number

2 4 _’@> mod p — 1, since for primep > 3,p — 1 is even.)

2? 6 e Cyclic —any element is a generator. E.g. it is easy to see that all

even powers of g can be generated by g2.



The Discrete Logarithm Problem (DL)

The discrete-log experiment DLog, ¢(n)

1.

(2
3

Run@to obtain ( (g) where G is a cyclic group of

orderq (with ||q|| = thﬁki
Choose a uniform h € ]X’ \ g q.
Ais given G, 9 h h and outputsx € Z,; | D(aﬂ

The output t of the e experiment is deflned to be 1 if gx =h

and 0 otherwise.
16} % (3" @ % X & /g

Definition: We say that the DL problem is hard relative to G if
for all ppt algorithms A there exists a negligible function neg
such that

Pr[DLogA,G(n) = 1] <neg(n).



The Diffie-Hellman Problems



ov(%’ 2 /k\(\\YV\CM/\

TheﬂCDH Problem
\ J/ X/ Qowpv’vaﬁono\l

Given (G, q, g) and uniform hy = g*t,h, = g

compute g*1*z, ¢ 3
we L &
t 0\’ Xy ZC}

Kz

o (031) har g et
K 0, X'Xzﬁ “dkoﬁa\ﬂ'z, e Xz |
S Gt § )T Ay ) g

Bl DLO‘} @?Wuk COR



The DDH Problem

We say that the DDH problem is hard relative to G if
for all ppt algorithms A, there exists a negligible
function neg such that

|Pr{A(G,q,9,9% 97, 9%) = 1]
— Pr[A(G,q,9,97,97,9™) = 1]| < neg(n).
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Relative Hamthe Assumptions

Breaking DLog — Breaking CDH — Breaking DDH

DDH Assumption —» CDH Assumption — DLog
Assumption





