Cryptography

Lecture 18



Announcements

 HW7 due 4/24/23



Agenda

* More Number Theory!



Chinese Remainder Theorem



Going from (a,b) € Z,, X Z,
tox € Zy

Find the unique x mod N such that
X =amodp

X = bmod q
Recall since gcd(p, g) = 1 we can write

Xp+Yqg=1
Note that

Xp=0modp

Xp = 1mod q
Whereas

Yg=1modp

Yg = 0mod p



Going from (a,b) € Z,, X Z,
tox € Zy
Find the unique x mod N such that
X =amodp
X = bmod q
Claim:

b-Xp+a-Yg=amodp
b-Xp+a-Yqg=bmodq

Therefore,x =b-Xp+a-Yqmod N



Modular Exponentiation



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

a&@«‘{
ModExp(a, m, N) //computes a™ mod N
Set tfemp =1 e
Fori=1tom Codk o
Set temp = (temp - a)mod N Q9 NS
return temp; . st o



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;

No—the run time is O(m). m can be on the order of N.
This means that the runtime is on the order of O(N),
while to be efficient it must be on the order of O(log N) .



Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(a, m, N) //computes@mod N, where m =
My, _1My_o - MMy are the bits of m.

Set s =
Settemp =1
Fori=0ton—1

f m; = 1
Set temp = (temp - s)mod N
Set s := s? mod N
return temp;

This is clearly efficient since the loop runs for n iterations, where n =
log, m.



Modular Exponentiation

Why does it work?

n—1
m = z m; - 2
i=0
Consider a™ = gZizo Mi'2'= s a™i'?t S = G\L |
2t e
In the efficient algorithm: S =& =g

s values are precomputations of a,zl, for i_:1 0 ton — 1 (thisis the

. ” ) { i— -
“repeated squaring” part since a? = (a? )?). 2\>a
If m; = 1, we multiply in the corresponding s-value. (0\ -

If m; = 0, then a™'2" = a® = 1 and so we skip the multiplication step. <>



Getting Back to Z,,

Group Z,, = @1, ...,p — 1} operation:
multiplication modulo p.

Order of a finite group is the number of
elements in the group.

Orderof Z, isp — 1.

\/_—h



Fermat’s Little Theorem

Theorem: For prime p, integer a:
aP = a mod p.

ed
Corollary: For prime p and a such that (%l, p) =1:
aP~1 = 1modyp
o ~ T ?,\3
ordo v /Zd(? :\)”'/L.
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Generalized Theorem ¢ -,

Theorem: Let G be a finite group with m

the order of the group. Then for any element l

m o ot mad N
g E G;g — 1. OYCS 3 QWN\O &\b\y\+

Corollary of Fermat’s Little Theorem is a special

case of the above when G is the multiplicative

group Z~ . and p is prime. pras Lwd N
Fuclido~ Alsy. ‘f)“}\(r\)' N)#ﬂ_ N\(?‘“ i i>

7o —\ngSM b N= pa-A
Syt sadt Qeeh

> iy @‘i\)” (N)= 4



Multiplicative Groups Mod N

 What about multiplicative groups modulo N, where N
IS composite?

e Which numbers {1, ..., N — 1} have multiplicative
inverses mod N7

— a such that gcd(a, N) = 1 has multiplicative inverse by
Extended Euclidean Algorithm.

— a such that gcd(a, N) > 1 does not, since gcd(a, N) is the

smallest positive integer that can be written in the form
Xa + YN forinteger X,Y.

e DefineZy ={a€{l,..,N—1}|gcd(a,N) = 1}.
* Zy is an abelian, multiplicative group.
— Why does closure hold?

e, b M;JA/M %0A<Q/N>Tﬂcol(b7 N}fi P
S{}jﬁi‘ Odeo( <0\‘\0f )\> = .



Order of Multiplicative Groups Mod N

We\ﬂ‘fwﬁ\vx P = @OLM-

* What is the order of Zy,?

* This has a name. The order of Z is the
quantity ¢ (N), where ¢ is known as the Euler
totient function or Euler phi function. JWMW

* Assume N = p - q, where p, q are distinct B p)=p-1.
primes. |
~¢WN)=N-p-q+l=p-q-p-q+1=

(p-D@—-D. =719
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Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let N = []; pfi where the {p;} are
distinct primes and e¢; = 1. Then

o) = | [ - D).



Another Special Case of Generalized
Theorem
ZM

Corollary of generalized theorem: N
For a such that gcd(a, N) = 1: N=¢-1
a®®™) =1 mod N. e Th



Another Useful Theorem

Theorem: Let G be a finite group withm = |G| >
1. Then forany g € G and any integer x, we have

X
g¥ = gxmodm V) mod N
7
Proof: We writex =a-m +@ where aisan  yw.d Cp(@
integer and b = x mod m. @ mod [N

. gx — ga-m+b — (gm)a : gb
* By “generalized theorem” we have that
(gm)a,gb — 1a,gb — gb — gxmodm_
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4(36)7 46 = ‘SX - I 27> d 352
N EXample: PGk ()
g Woc}\gg

25
Compute 3“2 mod 35 by hand. 2 25

d(35)=¢(5-7)=06B-1)(T7—-1) =24
325 = 325m0d 24 6 35 = 31 mod 35
= 3 mod 35.

g w\aA g‘f) ?) med, DO
L= mv s 34 math B8
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Toolbox for Cryptographic
Multiplicative Groups

'(.( [N\ L A/ \; .n‘ (| AN\
Can be done efficientlv No efficient algcrithm believed to exist

Modular multiplication Factoring
Finding multiplicative inverses (extended RSA problem
Euclidean algorithm)
Modular exponentiation (via repeated Discrete logarithm problem
squaring)

Diffie Hellman problems

\

We have seen the efficient algorithms in the left column.
We will now start talking about the “hard problems” in the right
column.





