Cryptography

Lecture 22

Announcements

- HW 7 due 4/25
- No Instructor Office Hours on 4/22

Agenda

- Last time:
 - Number theory
 - Hard problems (Factoring, RSA)
- This time:
 - More number theory (cyclic groups)
 - Hard problems (Discrete log and Diffie-Hellman problems)
 - Elliptic Curve groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g \rangle = \{g^0, g^1, ..., g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider Z^*_{13} :

2 is a generator of Z^*_{13} :

2 ⁰	1				
2 ¹	2				
2 ²	4				
2 ³	8				
2 ⁴	16 → 3				
2 ⁵	6				
2 ⁶	12				
27	24 → 11				
28	22 → 9				
2 ⁹	18 → 5				
210	10				
211	20 → 7				
212	14 → 1				

3 is not a generator of Z^*_{13} :

3 ⁰	1			
3 ¹	3			
3^2	9			
3^3	27 → 1			
3 ⁴	3			
3 ⁵	9			
3 ⁶	27 → 1			
3 ⁷	3			
38	9			
3 ⁹	27 → 1			
3 ¹⁰	3			
3 ¹¹	9			
3 ¹²	27 → 1			

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$.

Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 2, we have that $0 \equiv m \mod i$
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z^*_{p} is a cyclic group of order p-1.

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z^*_p is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in $Z^*_{\ p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} .

Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$.

$$g=2$$
 is a generator of Z^*_{11} :

2 ⁰	1				
2 ¹	2				
2 ²	4				
2^3	8				
2 ⁴	16 → 5				
2 ⁵	10				
2 ⁶	20 → 9				
27	18 → 7				
2 ⁸	14 → 3				
2 ⁹	6				

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod p-2 gives an even number mod p-1, since for prime p>3, p-1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $h \in G$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms \boldsymbol{A} there exists a negligible function neg such that

$$\Pr[DLog_{A,\mathbf{G}}(n)=1] \leq neg(n)$$
.

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_1 = g^{x_1}$, $h_2 = g^{x_2}$, compute $g^{x_1 \cdot x_2}$.

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A(G, q, g, g^x, g^y, g^y, g^{xy}) = 1]| \le neg(n).$$

Relative Hardness of the Assumptions

Breaking DLog → Breaking CDH → Breaking DDH

DDH Assumption → CDH Assumption → DLog Assumption