ENEE/CMSC/MATH 456 Cryptography: Homework 6 Due by 2pm on 4/11/2022. | 1. | Given a degree-5 LFSR with output sequence $1, 0, 0, 0, 0, 1, 0, 1, 1, 1$ (where the output in time step 1 is on the left and the output in time step 10 is on the right). Determine the initial state and feedback coefficients of the LFSR. | |----|--| | | the output in time step 10 is on the right). Betermine the initial state and recoder coefficients of the Li or. | | | | | 2. | In our attack on a one-round SPN, we considered a block length of 64 bits and 8 S-boxes, each taking an 8-bit input. Repeat the analysis for the case of 16 S-boxes, each taking a 4-bit input. What is the complexity of the attack now? Repeat the analysis again with a 128-bit block length and 16 S-boxes that each take an 8-bit input. | | | | | 2 | To delice and the control of con | | 3. | In this question we assume a three-round SPN with 64-bit block length. Assume independent 64-bit sub-keys are used in each round, so the master key is 256 bits long. Show a key-recovery attack using approximately $2 \cdot 128 \cdot 2^{128}$ time. The number and input size of the S-boxes is not needed to answer the question.
Hint: Use a meet-in-the-middle attack. | | | | | | | | 4. | What is the output of an r -round Feistel network when the input is (L_0, R_0) in each of the following two cases: | | | (a) Each round function outputs all 0s, regardless of the input. | | | | | | | | | (b) Each round function is the identity function. | 5. In this question, you are asked to recover the key for a 1-round SPN with 6-bit input, 6-bit output and 6-bit key, given a single input-output pair. It is possible that there is more than one consistent key-pair based on the given information. If this is the case then all consistent key-pairs will be marked correct. Make sure to show all work. The SPN has the following structure: To compute the permutation $F_k(x)$ on input x (6 bits) with key k (12 bits): - Parse $k = k^1 || k^2$, where k^1 and k^2 are the round keys and each have length 6 bits. - Compute the intermediate value $z = x \oplus k^1$. - Parse $z = z_1 || z_2$, where z_1 and z_2 each have length 3 bits. - For each $i \in [2]$, input z_i to the corresponding S-box S_i defined below, obtaining outputs w_1, w_2 . Let $w = w_1 || w_2$ (length 6 bits) be the combined output. - Permute the bits of w to obtain w' as described in the chart below. - Output $y = w' \oplus k^2$. | | 000 | 100 | |--|-----|-----| | | 001 | 111 | | | 010 | 010 | | S-box S_1 : | 011 | 000 | | \mathfrak{S} -box \mathfrak{S}_1 . | 100 | 011 | | | 101 | 101 | | | 110 | 001 | | | 111 | 110 | | | 000 | 110 | |---------------|-----|-----| | | 001 | 111 | | | 010 | 011 | | S-box S_2 : | 011 | 101 | | 3-00x 32. | 100 | 000 | | | 101 | 010 | | | 110 | 100 | | | 111 | 001 | The following chart shows how the 6 bits of w are permuted to obtain w'. | 1 | 2 | 3 | 4 | 5 | 6 | |---|---|---|---|---|---| | 3 | 5 | 2 | 6 | 1 | 4 | Namely, on input $w := w_1, w_2, w_3, w_4, w_5, w_6$, we permute the bits to obtain output $w' := w_3, w_5, w_2, w_6, w_1, w_4$. Assume you are given that $F_k(111010) = 010011$ and $F_k(011100) = 101010$. Additionally, you are given that the first bit of k^1 is equal to 1 and the fourth bit of k^1 is equal to 0. So k^1 has the form 1 * *0 * *. Find $k = k^1 || k^2$. Given the above information, there is an attack that requires you to evaluate the SPN at most 16 times. Solutions that recover the correct key but take longer, may not receive full credit.