Cryptography ENEE/CMSC/MATH 456: Homework 5

Due by beginning of class on 3/9/2022.

- 1. Recall our construction of CPA-secure encryption from PRF (Construction 3.28 in the textbook). Show that while providing secrecy, this encryption scheme *does not* provide message integrity. Specifically, show that an attacker who sees a ciphertext $c := \langle r, s \rangle$, but does not know the secret key k or the message m that is encrypted, can still create a ciphertext c' that encrypts $m \oplus 1^n$.
- 2. Say $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is a secure MAC, and for $k \in \{0, 1\}^n$, the tag-generation algorithm Mac_k always outputs tags of length t(n). Prove that t must be super-logarithmic or, equivalently, that if $t(n) = O(\log n)$ then Π cannot be a secure MAC.

Hint: Consider the probability of randomly guessing a valid tag.

- 3. Consider the following MAC for messages of length $\ell(n)=2n-2$ using a pseudorandom function F: On input a message $m_0||m_1$ (with $|m_0|=|m_1|=n-1$) and key $k\in\{0,1\}^n$, algorithm Mac outputs $t=F_k(0||m_0)||F_k(1||m_1)$. Algorithm Vrfy is defined in the natural way. Is (Gen, Mac, Vrfy) secure? Prove your answer.
- 4. Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticated fixed-length messages. (In each case Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)
 - (a) To authenticate a message $m=m_1,\ldots,m_\ell$, where $m_i\in\{0,1\}^n$, compute $t:=F_k(m_1)\oplus\cdots\oplus F_k(m_\ell)$.
 - (b) To authenticate a message $m=m_1,...,m_\ell$, where $m_i \in \{0,1\}^{n/2}$, compute $t:=F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell)$.