Cryptography Lecture 15 #### Announcements • HW5 due on 4/6 # Agenda - Last time: - Domain Extension - (Merkle-Damgard) (K/L 5.2) (Review) - Sponge Construction - New topic: Practical constructions - Stream Ciphers (K/L 6.1) - This time: - Practical constructions of Block Ciphers - SPN (K/L 6.2) - Feistel Networks (K/L 6.2) #### **Block Ciphers** Recall: A block cipher is an efficient, keyed permutation $F:\{0,1\}^n \to \{0,1\}^\ell$. This means the function $F_k(x) \coloneqq F(k,x)$ is a bijection, and moreover, F_k and its inverse F_k^{-1} are efficiently computable given k. - *n* is the key length - ℓ is the block length #### **Block Cipher Security** Call for proposals for the AES competition: 1997-2000 "The security provided by an algorithm is the most important factor... Algorithms will be judged on the following factors... The extent to which the algorithm output is indistinguishable from a random permutation..." Note: It is assumed the adversary gets to query both F_k , F_k^{-1} or f, f^{-1} , which means we want a **strong** pseudorandom permutation. #### First Idea - Random permutations over small domains are "efficient." - What does this mean? - First attempt to define F_k : - The key k for F will specify 16 permutations f_1,\ldots,f_{16} that each have an 8-bit block length ($16\cdot 8=128$ input length in total). - Given an input $x\in\{0,1\}^{128}$, parse it as 16 bytes x_1,\dots,x_{16} and then set $F_k(x)=f_1(x_1)||\cdots||f_{16}(x_{16})$ - Is this a permutation? - Is this indistinguishable from a random permutation? #### Shannon's Confusion-Diffusion Paradigm Above step is called the "confusion" step. It is combined with a "diffusion" step: The bits of the output are permuted or "mixed," using a mixing permutation. - Confusion/Diffusion steps taken together are called a round - Multiple rounds required for a secure block cipher Example: First compute intermediate value $y = f_1(x_1) || \cdots || f_{16}(x_{16})$. Then permute the bits of y. #### Substitution-Permutation Network (SPN) In practice, round-functions are not random permutations, since it would be difficult to implement this in practice. - Why? - Instead, round functions have a specific form: - Rather than have a portion of the key k specify an arbitrary permutation f, we instead fix a public "substitution function" (i.e. permutation) S, called an S-box. - Let k define the function f given by $f(x) = S(k \oplus x)$. #### Informal Description of SPN - 1. Key mixing: Set $x := x \oplus k$, where k is the current round sub-key. - 2. Substitution: Set $x := S_1(x_1) || \cdots || S_8(x_8)$, where x_i is the *i*-th byte of x. - 3. Permutation: Permute the bits of *x* to obtain the output of the round. - 4. Final mixing step: After the last round there is a final key-mixing step. The result is the output of the cipher. - Why is this needed? - Different sub-keys (round keys) are used in each round. - Master key is used to derive round sub-keys according to a key schedule. Formal Description of SPN FIGURE 6.2: A substitution-permutation network. ## SPN is a permutation Proposition: Let F be a keyed function defined by an SPN in which the S-boxes are all permutations. Then regardless of the key schedule and the number of rounds, F_k is a permutation for any k. ## How many rounds needed for security? The avalanche effect. Random permutation: When a single input bit is changed to go from x to x', each bit of f(x) should be flipped with probability $\frac{1}{2}$. - S-boxes are designed so that changing a single bit of the input to an S-box changes at least two bits in the output of the S-box. - The mixing permutations are designed so that the output bits of any given S-box are used as input to multiple S-boxes in the next round. #### The Avalanche Effect f(x) vs. f(x') where x, x' differ in one bit: - 1. After the first round the intermediate values differ in exactly two bit-positions. Why? - 2. The mixing permutation spreads these two bit positions into two different *S*-boxes in the second round. - At the end of the second round, intermediate values differ in 4 bits. - 3. Continuing the same argument, we expect 8 bits of the intermediate value to be affected after the 3rd round, 16 after the 4th round, and all 128 bits of the output to be affected at the end of the 7th round. ## **Practical SPN** - Usually use more than 7 rounds - ullet S-boxes are NOT random permutations. #### Attacking Reduced-Round SPN One-round SPN: 64-bit block length. *S*-boxes with 8-bit input. Independent, 64-bit subkeys. #### First attempt at attack: - Give an input/output pair (x, y) - ullet Enumerate over all possible values for the second-round subkey $k_2.$ - For each such value, invert the final key-mixing step to get a candidate output y'. - Given (x, y'), the first round subkey k_1 is determined. - Use additional input-output pairs to determine the correct $(k_1||k_2)$ pair. How long does this attack take? #### Attacking Reduced-Round SPN One-round SPN: 64-bit block length. S-boxes with 8-bit input. Independent, 64-bit subkeys. Improved attack—work byte-by-byte: - Given an input/output pair (x, y) - Enumerate over all possible values for the 8 bit positions corresponding to the output of the first S-box for the second-round subkey k_2 . - For each such value, invert the final key-mixing step to get a candidate 8-bt output y'. - Given (x, y') the first 8-bits of the first-round subkey k_1 are determined. - Construct a table of 2^8 possible key values for each block of 8-bits of k_1, k_2 . - Use additional input-output pairs to determine the correct 8-bits of k_1 and first bye of k_2 . How long does this attack take? $8 \cdot 2^8 = 2^{11}$. Can be improved: Use additional input/output pairs. Incorrect pair $(k_1||k_2)$ will work on two pairs with probability 2^{-8} . Can use small number of input/output pairs to narrow down all tables to a single value each at which point the entire master key is known. In expectation, a single additional pair will reduce each table to a single consistent key value.