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In this paper, we present a theoretical investigation and an extensive computational study of exterior
point simplex algorithm (EPSA) initialization methods for the assignment problem (AP). We describe the
exterior point algorithm using three different initialization methods. Effective implementations are explored
for each initialization method. Then we perform an experimental evaluation on a large set of benchmark
problems from the TSPLib 95 and OR Library collections. The results obtained demonstrate the advantages
of the three initialization methods. Finally, we give a theoretical justification of the initialization methods
efficiency. We explain theoretically the computational ranking for these methods.
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methods; computational evaluation
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1. Introduction

The assignment problem (AP) is one of the most well-studied problems in mathematical program-
ming. The AP has various applications in the real world. It could be used to model the assignment
of employees to tasks, or machines to production jobs, but its uses are more widespread. For
example, it could be used in computer networking or in assigning aircrafts to trips. The AP is a
Hitchcock transportation problem. The only difference is that the supply (demand) at every supply
(demand) node is equal to one.

A large number of algorithms has been developed for the AP. The worst-case complexity of
the best algorithms for the AP is O(n3), where n is the size of the problem. The main algorithm
categories for the AP are the primal–dual, simplex type, cost operator, recursive, forest and the
interior point algorithms. Primal–dual algorithms work with a pair of an infeasible primal solution
and a feasible dual solution, which satisfy the complementarity slackness conditions. The most
well-known algorithms of this category are the Hungarian method [14] and the auction algorithm
[9]. The Hungarian method is the first non-simplex algorithm for the AP.
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1832 C. Papamanthou et al.

The simplex type algorithms are modifications of the classical network simplex algorithm.
According to the nature of the initial basic solution, simplex type algorithms can be further divided
into two subcategories: primal and dual simplex type algorithms. Dual simplex type algorithms
for the AP work with a spanning tree that defines a dual feasible basic solution. At every iteration,
a pivoting operation is performed on an arc for which the corresponding primal constraint is
violated. The use of different pivoting rules for the selection of the leaving and entering arcs
resulted in different versions of dual simplex algorithms. Balinski [6] introduced a competitive
dual simplex algorithm for the AP with O(n2) pivot and O(n3) time complexity. Goldfarb [12]
developed a different signature method that solves a sequence of smaller problems of the given
AP. An algorithm that works with strongly dual feasible trees has been developed by Akgül [3].
Its worst case complexity is O(n3) or O(nm + n2 log n) depending on the data structure used. A
similar algorithm to Akgül’s was proposed by Paparrizos [19].

A non-dual signature method for the AP has been developed by Paparrizos [18]. This algorithm
visits only strong trees that are obtained from strongly feasible trees by dropping the feasibility
requirement. Its worst case complexity is O(n4). An efficient implementation of Paparrizos’s
algorithm was given by Akgül and Ekin [4]. The improvement is that this algorithm updates a
forest rather than a tree. The worst case complexity decreased to O(n3) using elementary data
structures. Using Fibonacci Heaps for sparse APs it has O(n2 log n + nm) complexity. Later,
Paparrizos [20] developed a new class of simplex type algorithms for the AP with O(n3) com-
plexity. This class is called exterior point simplex algorithm (EPSA). An experimental study to
compare the classical simplex algorithm and the exterior point algorithm for the transportation
problem can be found in [16]. Totally, four algorithms are compared on uniformly randomly
generated test problems. The results are very encouraging for the dual forest exterior point
algorithm.

A complete survey of computationally attractive algorithms for the classical AP can be found
in [5]. Surveys on methods and algorithms that solve the AP have been presented by Martello and
Toth [15] and Derigs [11]. Several papers and research work exist that compare algorithms for
the AP [10,13,23]. It is well known that using an efficient starting solution is essential. Very often
differences in running time are not due to different algorithmic approaches (such as primal, dual,
primal–dual, etc.), but are due to the various starting procedures that are used.

The aim of this research work is twofold. First is to perform an extended computational study
between three different initialization methods for the EPSA. Second, and more importantly, to
analyse the three different approaches theoretically and to give some additional algorithmic insight
into why the winners won. Towards these aims, we make the following contributions.

• We describe the EPSA using three different initialization methods. These methods are the EPSA
starting with:

(i) Balinski’s feasible tree [20],
(ii) a simple forest [2] that is neither primal nor dual feasible and,

(iii) a feasible forest [1].
The exterior point simplex algorithm using the last initialization method solves an AP in at

most (n(n − 1))/2 iterations and in at most O(n3) time. A detailed visual representation of
these three initializations is described in Ref. [17].

• We perform an extensive computational study on various dense benchmarkAPs from theTSPLib
95 (TSP stands for Travelling Salesman Problem) and OR Library collections. This study con-
sists of two parts. In the first part, we report results showing the advantages of the initialization
methods for the AP testbed. In the second part, we report the computation of the column level
of a solution for each of the benchmark APs. The column level declares the distance of an initial
solution from the optimal solution. Roughly speaking, column level is one of the main factors
that determines the quality of the initial solution.
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• Finally, we give a theoretical justification of the three diferrent initialization methods efficiency.
The computational efficiency of all simplex type algorithms depends on
(i) the distance between the initial solution and the optimal solution and

(ii) the structure of the initial solution.
We explain theoretically the computational ranking for the three competitors.

This paper is organized as follows. Following this introduction, in Section 2 we give the nec-
essary mathematical background and briefly present the EPSA. In Section 3, we present the three
different initialization methods. We also demonstrate these methods using an illustrative example.
In Section 4, we present experimental results on benchmark APs that demonstrate the effective-
ness of the three initialization methods. A theoretical explanation of the efficiency of these three
initialization methods is presented in Section 5. Finally, in Section 6 we conclude and discuss
future work.

2. Exterior point algorithm description

It is well known that an AP can be represented by bipartite graph G(S, D, E) = G(N, E), which
consists of two discrete sets of nodes S, D (N = S ∪ D, S ∩ D = ∅), such as |S| = |D| = n.
Here, E is the set of arcs directed from nodes of S to D. Nodes i ∈ S are called column (supply)
nodes, whereas nodes j ∈ D are called row (demand) nodes. In our figures, we draw column
nodes as circles and row nodes as squares. The mathematical formulation of the linear AP with a
square (n × n) cost matrix C is the following:

(LAP) min
n∑

i=1

n∑
j=1

cij xij , (1)

s.t.

n∑
i=1

xij = 1, j = 1, 2, . . . , n (2)

n∑
j=1

xij = 1, i = 1, 2, . . . , n, (3)

xij ≥ 0, 1 ≤ i, j ≤ n. (4)

Problem LAP can be formulated by means of the integer linear programming problem defined
by Equations (1), (2), (3), and replacing (4), with the constraints

xij ∈ Z, 0 ≤ xij ≤ 1, 1 ≤ i, j ≤ n.

Obviously, xij = 1 or 0. In particular, xij = 1 if column j is assigned to row i. The associated
dual problem to LAP is:

(DLAP) max
n∑

i=1

ui +
n∑

j=1

vj ,

s.t. ui + vj ≤ cij ,

1 ≤ i, j ≤ n.

Given a pair of feasible solutions, x and (u, v), for the problems, LAP and DLAP respectively,
the complementary slackness condition is stated as

xij sij = 0, (i, j = 1, 2, . . . , n), where sij = cij − ui − vj . (5)
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1834 C. Papamanthou et al.

By sij , we denote the reduced cost variable corresponding to the variable arc (i, j). In our imple-
mentation, all the reduced cost variables are stored in a square (n x n) matrix. From now on we
will assume that this square (n x n) matrix has full dense, since all the benchmark instances in
our computational study of Section 4, have full dense cost matrics. Furthermore, by si. we denote
a row vector corresponding to the i row of that square (n x n) matrix. For example, by s4. we
denote a row vector containing all the reduced cost variables which correspond to arcs leaving
from the fourth supply node. Therefore, s4. = (s41, s42, s43, . . . , s4n). Similarly, by s.i we denote
a column vector corresponding to the i column of that square (n x n) matrix. For example, by
s.4 we denote a column vector containing all the reduced cost variables which correspond to arcs
coming to the fourth demand node. Therefore, sT

.4 = (s14, s24, s34, . . . , sn4). Moreover, by e we
denote a unit column vector of n elements, while the transpose of e will be denoted by eT . For
example, the unit row vector is eT = (1, 1, . . . , 1).

Roughly speaking, EPSA, for the AP, are initialized with a feasible tree or forest. The main
difference between them and the dual simplex type algorithms is that exterior point algorithms do
not maintain dual feasibility on every iteration. Dual feasibility is destroyed and restored again
at the optimal solution. The main idea of EPSA is as follows. At each iteration, a solution T is
computed. T is a directed rooted tree. It represents the current assignments for each individual
solution. Every arc (i, j) of the tree is directed from a column node to a row node and represents the
temporary assignment of facility j to a user i. The set of nodes are partitioned into two subsets, F
and T \F . The algorithm stops when F = ∅. Both sets T and F depend on the initalization method,
which means that different initialization methods produce different starting trees and forests. In
Section 3, there is analytical description of the initialization of those two sets. Furthermore, there
is an explanatory example in Section 3.4 with an accompanying Figure 4.

As mentioned in the introduction, EPSA is a simplex type algorithm. This means that at every
iteration an arc enters the basis (entering variable) and an arc leaves the basis (leaving variable).
In our case, the basis is a tree that contains all the variables that are arcs of the current solution T .
Specifically, an entering arc (g, h) and a leaving arc (k, l) are chosen at each iteration. First, the
entering arc (g, h) is chosen by the relation, sgh = min{sij : i ∈ F, j ∈ T \F }. Then the leaving
arc (k, l) is chosen. The EPSA’s versions using three different initialization methods considered
in this paper, differ among each other in the way their starting tree structures are initialized, the
way subset F is constructed and the way the leaving arc (k, l) is chosen. EPSA also uses a special
data structure, tree, which from now on will be denoted by T ∗. More specifically, if the leaving
arc was discarded before the selection of the entering arc, then the current solution (T tree), would
have been divided into two sub-trees. We denote, by T ∗, the sub-tree that does not contain the
root node. The T ∗ tree is very important in the implementation, because only the reduced costs of
arcs with one of its nodes belonging to the tree T ∗ and the other to the subtree T \T ∗ are updated.
Finally, the T ∗ tree determines the sets F, T \F . In the pseudocode that follows we describe the
main steps of EPSA.

Algorithm 1 Require: G = (N, E), c, T

1 procedure EPSA(G, T )
2 Start with a special solution T . Determine the subsets F, T \F and compute sij according

to the initialization method.
3 while F 	= ∅ do
4 δ = sgh = min

{
sij : i ∈ F ∧ j ∈ T \F}

5 choose the leaving arc (k, l) according to the special rules of each initialization method.
6 Update tree using T ′ = T ∪ (g, h) \ (k, l)

7 if h ∈ T ∗ then
8 q = −δ

9 else
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10 q = δ

11 end if
12 for i ← 1, n do
13 if row node i ∈ T ∗ then
14 set si = si(T ) − qeT

15 end if
16 if column node j ∈ T ∗ then
17 set sj = sj (T ) + qe

18 end if
19 end for
20 set T = T ′
21 end while
22 end procedure

3. Initialization methods for EPSA

3.1 The Balinski tree

Balinski tree is dual feasible. Its root is row node 1 and all column nodes lie below the root at depth
1. The remaining (n − 1) row nodes are connected to the column nodes of the tree and thus lie at
depth 2. Let T denote the Balinski tree. The standard arcs of the tree are the arcs of type (1, j),
where j is a column node. Initially, we set u1(T ) = 0 and vj (T ) = cij , j = 1, 2, . . . , n. Hence, for
each arc (1, j) we compute the reduced costs using the relation s1j (T ) = c1j − u1(T ) − vj (T ) =
0. Given a row index i, the column index associated with the minimum cij − vj value of row i is

j (i) = arg min{cij − vj , j = 1, 2, . . . , n}.

The remaining dual variables ui(T ) can be computed by setting ui(T ) = min{cij − vj (T ), j =
1, 2, . . . , n}, i = 1, 2, . . . , n. Now let ui(T ) = cij (i) − vj(i), i = 2, 3, . . . , n. Then, (i, j (i)) ∈ T .
At this point, all arcs belonging to the Balinski tree have been determined. Now we can easily
compute the reduced costs of the non-basic variables using relation (5). The decision variables xij

corresponding to basic arcs (i, j) of the Balinski tree are computed easily by setting xij = 1, i =
2, 3, . . . , n and xij = 1, if j is a leaf of the tree. For the remaining arcs of type (1, j), where
column node j has at least one child, we set x1j = 1 − mj ≤ 0. We use variable mj to store the
number of children of column node j . Finally, the forest F is the set of trees {Tj : x1j < 0}, where
Tj is the subtree rooted on column node j . Obviously, T \F is a subtree of T . A general Balinski
tree for an AP of size n can be seen in Figure 1.

Figure 1. The general Balinski tree for an (n × n) assignment problem.
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1836 C. Papamanthou et al.

3.2 The simple start forest

Let the simple start forest be denoted by Q. Forest Q consists of the 2n isolated nodes. The
set F consists of all the row nodes, while the set T \F consists of all the column nodes. Thus,
F = {i : i ∈ S} and T \F = {j : j ∈ D}. Additionally, we set

ui(Q) = vj (Q) = 0, i ∈ S, j ∈ D. (6)

Thus, by replacing Equation (6) in relation (5) we get

sij (Q) = cij .

A general simple start forest for an AP of size n can be found in Figure 2.
To adjust the simple start forest to the needs of EPSA we need to transform the forest Q to

a tree T . This transformation can easily be done by inserting an artificial node 0, which is the
root of tree T and adding 2n artificial arcs. For each row node i, an artificial arc (i, 0) with
unit cost ci0 = 0 is introduced. Similarly, for each column node j an artificial arc (0, j) with
unit cost c0j = 0 is introduced. All the basic decision variables of type xi0, i = 1, 2, . . . , n and
x0j , j = 1, 2, . . . , n are initially set equal to 1. EPSA updates the sets F and T \F using the
relations F = {Ti : i ∈ S, (i, 0) ∈ T } and T \F = {Tj : j ∈ D}.

3.3 The dual feasible forest

Let Q denote this forest, which consists of n subtrees Tj . Let ui(Q), vj (Q), i, j = 1, 2, . . . , n,
denote the dual variables that correspond to the column and the row nodes of the forest,
respectively. Initially, we set

vj (Q) = 0, ∀j ∈ D.

Next, we compute the dual variables of the column nodes ui(Q) by setting

ui(Q) = min{cij : j = 1, 2, . . . , n}, ∀i ∈ S.

For the same reason referred to at the simple start method, we need to transform the forest Q to
a tree T . This can be done by inserting an artificial node 0 (root of the tree T ) and n artificial arcs.
For each column node j such that Tj ∈ F (j is the root of subtree Tj ), an artificial arc (j, 0) with
unit cost cj0 = 0 is introduced. Similarly, for each column node j /∈ F an artificial arc (0, j) with
unit cost c0j = 0 is introduced. Finally, it is set x0j (T ) = |d(j) − 2| and xj0(T ) = |d(j) − 2|,
where d(j) is the degree of node j after the insertion of the artificial arcs.

Let p be the column node such that ui(Q) = cip. Then, the arc (i, p) is a basic arc of the forest
Q. For each arc (i, p), we set xip = 1. The reduced costs sij can be computed using relation (5).
At this point note that sij (Q) ≥ 0, which means that forest Q is dual feasible. The initial set F is
F = {Tj : d(j) < 2}. A general dual feasible forest for an AP of size n is illustrated in Figure 3.

Figure 2. The general simple start forest for an (n × n) assignment problem.
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Figure 3. The general AKP forest for an (n × n) assignment problem.

Figure 4. Starting solutions: (a) Balinski, (b) simple start and (c) dual feasible forest.

3.4 An illustrative example

The cost matrix C = {cij }, ∀(i, j) ∈ A of order n is the input data in an AP. Suppose that we want
to solve the AP having the following cost matrix:

C =

⎡
⎢⎢⎣

−7 7 8 1
0 −1 2 9
3 0 9 1
1 12 4 5

⎤
⎥⎥⎦ .

If we apply the three initialization methods mentioned before in the example we get the feasible
solutions in Figure 4.

4. Computational experiments

In this section, we present our numerical results and briefly discuss some important implementa-
tion characteristics of the three initialization methods. In order to test the computational behaviour
of the three different initialization methods we have used benchmark instances from TSPLib 95
[22] and OR Library [7]. The TSPLib 95 and OR Library are well-known suites containing many
hard to solve optimization problems. All instances have full dense cost matrices. The cost matrix
C = {cij }∀ (i, j) ∈ A of order n is the input data in an AP. The order of the cost matrix varies up
to 1400 rows and columns. Our numerical experiments were performed on a PC with 2.4 GHz
P4 processor, RAM 512 Mb and with Windows XP Pro operating system. The three initialization
methods have been programmed in MATLAB 7.0.1 in exactly the same way. This means that the
codes used have been written following the same programming techniques adjusted every time
to the special characteristics of each initialization method. For each collection, the results are
summarized with a table and a figure. The reported CPU times were computed with the built-in
function, cputime. The given times are net times and do not include times for the input.

Moreover, in order to compute the nodes of the T ∗ tree, we have used a function that returns
the vector of the preorder traversal of a tree of root x. This preorder traversal can be implemented
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1838 C. Papamanthou et al.

Table 1. TSPLib 95: symmetric instances (time in seconds).

Bal SS AKP

Name n z value n iter CPU n iter CPU n iter CPU

a280 280 2423 1252 8.200 603 4.245 358 2.344
ali535 535 155,915 1870 36.573 1548 31.975 983 18.580
att48 48 8428 127 0.084 94 0.059 47 0.028
att532 532 22,783 2343 46.648 1198 25.523 623 12.578
berlin52 52 6287 134 0.092 124 0.084 62 0.039
bier127 127 95,802 334 0.633 395 0.786 255 0.456
brazil58 58 16,565 154 0.122 127 0.100 62 0.044
burma14 14 2866 31 0.013 29 0.011 16 0.003
ch130 130 4381 384 0.745 222 0.486 90 0.192
ch150 150 5558 551 1.341 299 0.780 150 0.383
d198 198 10,607 654 2.553 485 1.900 288 1.050
d493 493 30,286 2542 43.023 1468 26.555 909 15.227
d657 657 40,561 2532 73.767 1660 51.972 983 27.995
d1291 1291 40,698 4742 500.969 3114 357.234 1859 171.281
eil51 51 376 151 0.098 101 0.067 51 0.031
eil76 76 484 265 0.269 177 0.186 101 0.097
eil101 101 571 345 0.477 238 0.363 134 0.186
fl417 417 7422 1224 16.019 842 11.811 511 6.503
fl1400 1400 11,988 5884 751.659 3962 522.700 3349 422.694
gil262 262 1922 866 5.153 571 3.545 303 1.777
gr96 96 46,319 342 0.472 211 0.298 119 0.156
gr137 137 57,224 557 1.205 317 0.716 178 0.367
gr202 202 34,262 834 3.070 694 2.686 393 1.394
gr229 229 108,973 911 4.038 467 2.308 231 1.089
gr431 431 142,117 2164 29.759 1156 16.595 671 8.936
gr666 666 252,944 3469 98.817 1929 59.417 1210 34.514
kroA100 100 17,087 244 0.331 197 0.295 93 0.131
kroA150 150 21,515 448 1.044 296 0.772 148 0.378
kroA200 200 23,096 684 2.495 404 1.639 197 0.763
kroB100 100 16,791 275 0.391 193 0.288 87 0.128
kroB150 150 20,482 419 1.000 317 0.809 166 0.395
kroB200 200 23,409 709 2.563 368 1.495 179 0.705
kroC100 100 16,738 309 0.433 215 0.320 105 0.142
kroD100 100 16,540 264 0.375 210 0.313 106 0.148
kroE100 100 16,685 283 0.403 182 0.275 80 0.113
lin105 105 8956 284 0.445 212 0.336 92 0.142
lin318 318 27,289 978 7.944 651 5.747 288 2.445
p654 654 23,509 2692 78.889 1576 50.752 825 22.217
pcb442 442 46,830 2304 32.813 1175 17.948 698 9.688
pr76 76 77,119 195 0.194 153 0.158 80 0.078
pr107 107 24,207 275 0.436 181 0.305 92 0.150
pr124 124 38,925 330 0.636 188 0.395 69 0.139
pr136 136 85,552 459 1.019 280 0.648 168 0.363
pr144 144 20,008 354 0.805 208 0.536 68 0.161
pr152 152 43,044 402 1.039 308 0.839 152 0.414
pr226 226 49,937 607 2.853 440 2.153 206 0.972
pr264 264 33,026 888 5.045 493 3.138 224 1.317
pr299 299 39,881 1292 9.406 540 4.413 248 1.914
pr439 439 76,887 1471 20.841 842 12.933 415 6.036
pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491
rat99 99 1089 403 0.584 217 0.320 117 0.166
rat195 195 2095 723 2.716 382 1.480 193 0.717
rat575 575 6006 2932 66.128 1205 29.525 648 15.386
rat783 783 7443 3808 152.239 1543 71.867 758 32.819
rd100 100 6559 305 0.453 211 0.317 116 0.164
rd400 400 12,360 1545 17.736 783 10.314 386 4.914
rl1304 1304 189,885 4406 477.436 2518 313.114 1194 130.938
si175 175 20,243 477 1.505 377 1.239 233 0.703

(Continued)
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Table 1. Continued.

Bal SS AKP

Name n z value n iter CPU n iter CPU n iter CPU

si535 535 45,204 1164 22.261 947 20.731 490 10.005
si1032 1032 90,698 2319 152.338 1626 121.120 680 43.791
st70 70 519 200 0.194 149 0.147 75 0.077
swiss42 42 1009 101 0.064 72 0.045 31 0.016
ts225 225 115,605 1271 6.266 457 2.241 336 1.430
tsp225 225 3418 883 4.039 431 2.083 219 1.023
u159 159 34,649 567 1.484 296 0.856 146 0.405
u574 574 29,110 2750 61.617 1195 29.525 609 14.386
u724 724 35,792 4201 142.858 1478 55.714 733 26.756
u1060 1060 183,314 4994 354.372 2550 201.409 1500 106.028
ulysses16 16 5458 28 0.014 32 0.011 18 0.005
ulysses22 22 5767 43 0.025 48 0.014 26 0.008
vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145
Average 1309.155 54.695 741.197 34.306 416.380 18.778

non-recursively or recursively. During the first phase of the EPSA implementation, we used the
non-recursive version of the preorder traversal. We observe that nearly 50% of the CPU time
was absorbed by this function, increasing in this way the overall execution time of EPSA. For
this reason, we implemented preorder traversal recursively. In the rest of the paper, the first
initialization method is denoted by Bal, the second by SS and the third by AKP.

4.1 Benchmark APs (TSPLib 95)

In order to gain a deeper insight into the practical behaviour of the three initialization methods,
we tested them on some benchmark instances taken from TSPLib 95 [22]. TSPLib 95 is a library
of sample instances of the TSP from various sources and of various types. In our study, we
have solved instances that belong to two classes. These classes are symmetric (cij = cji, i, j =
1, 2, . . . , n, i 	= j) and asymmetric (cij 	= cji, i, j = 1, 2, . . . , n, i 	= j) TSPs. Given a set of
nodes and distances for each pair of nodes, find a roundtrip of minimal total length visiting each
node exactly once. Roughly speaking, the AP defines a lower bound for TSP. For this reason, it
is important to test the efficiency of the initialization methods on these benchmark instances. All
the diagonal elements of the TSPs are equal to zero. In order to solve these instances as APs using
EPSA, we assigned to these entries, cii , i = 1, 2, . . . , n, a large positive value M . This positive
value is equal to 108.

In Table 1, we present our computational results on symmetric TSPs in alphabetical order. The
total number of symmetric TSPs solved is 71. These instances are all very different from each other,
especially in the structure of the cost matrix. The entries of the cost matrix are computed using
various distance functions. These functions are Euclidean, pseudo-Euclidean and geographical
distances. For more details, see [22]. Also, the size n of the instances ranges from 14 to 1400. The
first two columns of Table 1 contain the name and the size of the TSP. In column 3, the optimal
value of the objective function for each instance is displayed. The remaining columns (columns
4 to 9) show the number of iterations and CPU time in seconds for each of the three initialization
methods. The last row of Table 1 defines the average number of iterations and the average CPU
time over all test instances.

Before analysing the results displayed in Table 1, we would like to warn the reader that the
computational results depend on many factors. For example, the choice of instances, structure of
the cost matrix, choice of the programming language and the choice of the computing environment.
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Table 2. Normalized iterations and CPU time averages for symmetric TSPs.

Bal SS AKP

n n iter CPU n iter CPU n iter CPU

a280 3.497 3.499 1.684 1.811 1.00 1.00
ali535 1.902 1.968 1.575 1.721 1.00 1.00
att48 2.702 3.000 2.000 2.111 1.00 1.00
att532 3.761 3.709 1.923 2.029 1.00 1.00
berlin52 2.161 2.360 2.000 2.160 1.00 1.00
bier127 1.310 1.387 1.549 1.723 1.00 1.00
brazil58 2.484 2.786 2.048 2.286 1.00 1.00
burma14 1.938 3.994 1.813 3.495 1.00 1.00
ch130 4.267 3.878 2.467 2.528 1.00 1.00
ch150 3.673 3.502 1.993 2.037 1.00 1.00
d198 2.271 2.432 1.684 1.810 1.00 1.00
d493 2.796 2.826 1.615 1.744 1.00 1.00
d657 2.576 2.635 1.689 1.856 1.00 1.00
d1291 2.551 2.925 1.675 2.086 1.00 1.00
eil51 2.961 3.150 1.980 2.150 1.00 1.00
eil76 2.624 2.774 1.752 1.919 1.00 1.00
eil101 2.575 2.563 1.776 1.950 1.00 1.00
fl417 2.395 2.463 1.648 1.816 1.00 1.00
fl1400 1.757 1.778 1.183 1.237 1.00 1.00
gil262 2.858 2.901 1.884 1.996 1.00 1.00
gr96 2.874 3.020 1.773 1.910 1.00 1.00
gr137 3.129 3.281 1.781 1.949 1.00 1.00
gr202 2.122 2.203 1.766 1.927 1.00 1.00
gr229 3.944 3.707 2.022 2.119 1.00 1.00
gr431 3.225 3.330 1.723 1.857 1.00 1.00
gr666 2.867 2.863 1.594 1.722 1.00 1.00
kroA100 2.624 2.524 2.118 2.250 1.00 1.00
kroA150 3.027 2.760 2.000 2.041 1.00 1.00
kroA200 3.472 3.273 2.051 2.150 1.00 1.00
kroB100 3.161 3.049 2.218 2.244 1.00 1.00
kroB150 2.524 2.530 1.910 2.047 1.00 1.00
kroB200 3.961 3.636 2.056 2.122 1.00 1.00
kroC100 2.943 3.044 2.048 2.253 1.00 1.00
kroD100 2.491 2.526 1.981 2.105 1.00 1.00
kroE100 3.538 3.583 2.275 2.444 1.00 1.00
lin105 3.087 3.132 2.304 2.363 1.00 1.00
lin318 3.396 3.249 2.260 2.350 1.00 1.00
p654 3.263 3.551 1.910 2.284 1.00 1.00
pcb442 3.301 3.387 1.683 1.853 1.00 1.00
pr76 2.438 2.480 1.913 2.020 1.00 1.00
pr107 2.989 2.906 1.967 2.031 1.00 1.00
pr124 4.783 4.573 2.725 2.843 1.00 1.00
pr136 2.732 2.810 1.667 1.789 1.00 1.00
pr144 5.206 5.000 3.059 3.330 1.00 1.00
pr152 2.645 2.509 2.026 2.026 1.00 1.00
pr226 2.947 2.936 2.136 2.215 1.00 1.00
pr264 3.964 3.830 2.201 2.382 1.00 1.00
pr299 5.210 4.914 2.177 2.305 1.00 1.00
pr439 3.545 3.453 2.029 2.143 1.00 1.00
pr1002 3.766 3.655 1.840 1.955 1.00 1.00
rat99 3.444 3.528 1.855 1.934 1.00 1.00
rat195 3.746 3.786 1.979 2.063 1.00 1.00
rat575 4.525 4.298 1.860 1.919 1.00 1.00
rat783 5.024 4.639 2.036 2.190 1.00 1.00
rd100 2.629 2.762 1.819 1.933 1.00 1.00
rd400 4.003 3.609 2.028 2.099 1.00 1.00
rl1304 3.690 3.646 2.109 2.391 1.00 1.00
si175 2.047 2.140 1.618 1.762 1.00 1.00

(Continued)
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Table 2. Continued.

Bal SS AKP

n n iter CPU n iter CPU n iter CPU

si535 2.376 2.225 1.933 2.072 1.00 1.00
si1032 3.410 3.479 2.391 2.766 1.00 1.00
st70 2.667 2.531 1.987 1.918 1.00 1.00
swiss42 3.258 4.099 2.323 2.899 1.00 1.00
ts225 3.783 4.383 1.360 1.567 1.00 1.00
tsp225 4.032 3.947 1.968 2.035 1.00 1.00
u159 3.884 3.668 2.027 2.116 1.00 1.00
u574 4.516 4.283 1.962 2.052 1.00 1.00
u724 5.731 5.339 2.016 2.082 1.00 1.00
u1060 3.329 3.342 1.700 1.900 1.00 1.00
ulysses16 1.556 2.998 1.778 2.333 1.00 1.00
ulysses22 1.654 3.172 1.846 1.784 1.00 1.00
vm1084 3.957 3.802 1.978 2.175 1.00 1.00
Average 3.176 3.238 1.940 2.105

All these factors influence the relative performance of the three initialization methods. All TSPs
were solved within the time limit. The average number of iterations for the initialization methods,
Bal, SS and AKP, is 1.309,155, 741,197 and 416,380 iterations, respectively. The corresponding
average CPU times (in seconds) are 54,695, 34,306 and 18,778, respectively. Table 2 contains
the normalized ratios taken from Table 1. As we can see from Table 2, AKP is about 3.176 times
faster than Bal in terms of the number of iterations and about 3.238 times faster in terms of the
CPU time over all symmetric TSPs. From the same table, we observe that AKP is also faster than
SS over all instances. Particularly, AKP is about 1.940 times faster than SS in terms of the number
of iterations and about 2.105 times faster in terms of the CPU time.

In order to show more clearly the superiority of the initialization method, AKP over the other
methods, we plot the number of iterations and the CPU time of the seven largest symmetric TSPs
(Figures 5 and 6).

Table 3 demonstrates the performance of the three initialization methods on asymmetric TSPs.
The asymmetric TSPs have at most 171 rows and columns and are generally easy for all the
initialization methods. We solved 15 asymmetric instances in total. The average running times for
the three initialization methods (Bal, SS, AKP) are 0.186, 0.161 and 0.084 seconds, respectively.
From Table 3, we can observe that AKP performs better than Bal and SS in the asymmetric
instances. In Table 4, we give the normalized ratios taken from Table 3.

Figure 5. Number of iterations for the largest symmetric Travelling Salesman Problems.
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1842 C. Papamanthou et al.

Figure 6. CPU time (in seconds) for the largest symmetric Travelling Salesman Problems.

Table 3. TSPLib 95: Asymmetric instances (time in seconds).

Bal SS AKP

Name n z value n iter CPU n iter CPU n iter CPU

br17 17 0 23 0.009 23 0.011 10 0.006
ft53 53 5931 152 0.103 143 0.098 94 0.057
ft70 70 37,978 198 0.181 206 0.203 145 0.130
ftv33 34 1185 74 0.050 70 0.036 36 0.020
ftv35 36 1381 82 0.045 75 0.042 40 0.025
ftv38 39 1438 90 0.050 84 0.044 45 0.022
ftv44 45 1521 105 0.066 92 0.056 47 0.028
ftv47 48 1652 110 0.077 102 0.069 54 0.041
ftv55 56 1435 130 0.105 106 0.080 52 0.038
ftv64 65 1721 163 0.139 139 0.122 76 0.063
ftv70 71 1766 172 0.164 127 0.128 63 0.058
ftv170 171 2631 460 1.320 352 1.116 193 0.575
kro124p 100 33,978 285 0.392 193 0.298 99 0.144
p43 43 148 106 0.073 85 0.047 50 0.025
ry48p 48 12,517 146 0.010 83 0.059 36 0.028
Average 153.067 0.186 125.333 0.161 69.333 0.084

Table 4. Normalized iterations and CPU time averages for asymmetric TSPs.

Bal SS AKP

n n iter CPU n iter CPU n iter CPU

br17 2.300 1.440 2.300 1.744 1.00 1.00
ft53 1.617 1.803 1.521 1.721 1.00 1.00
ft70 1.366 1.398 1.421 1.566 1.00 1.00
ftv33 2.056 2.462 1.944 1.770 1.00 1.00
ftv35 2.050 1.812 1.875 1.688 1.00 1.00
ftv38 2.000 2.285 1.867 2.000 1.00 1.00
ftv44 2.234 2.333 1.957 2.000 1.00 1.00
ftv47 2.037 1.884 1.889 1.692 1.00 1.00
ftv55 2.500 2.792 2.038 2.125 1.00 1.00
ftv64 2.145 2.225 1.829 1.950 1.00 1.00
ftv70 2.730 2.838 2.016 2.216 1.00 1.00
ftv170 2.383 2.296 1.824 1.940 1.00 1.00
kro124p 2.879 2.728 1.949 2.076 1.00 1.00
p43 2.120 2.938 1.700 1.875 1.00 1.00
ry48p 4.056 0.355 2.306 2.111 1.00 1.00
Average 2.298 2.106 1.896 1.898
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Table 5. OR Library instances (time in seconds).

Bal SS AKP

Name n z value n iter CPU n iter CPU n iter CPU

assign100 100 305 383 0.053 263 0.040 179 0.025
assign200 200 475 1210 0.435 612 0.244 436 0.168
assign300 300 626 2162 1.534 1031 0.819 776 0.567
assign400 400 804 3302 3.869 1801 2.291 1355 1.645
assign500 500 991 5147 9.119 2309 4.291 1873 3.245
assign600 600 1176 7430 18.193 2738 7.198 2432 6.078
assign700 700 1362 9755 32.374 3198 11.321 2697 9.070
assign800 800 1552 12,980 54.684 3684 16.670 3692 15.871
Average 5296.125 15.033 1954.500 5.359 1680.000 4.584

Table 6. Normalized iterations and CPU time averages for OR Library assignment problems.

Bal SS AKP

n n iter CPU n iter CPU n iter CPU

assign100 2.140 2.106 1.469 1.608 1.00 1.00
assign200 2.775 2.587 1.404 1.450 1.00 1.00
assign300 2.786 2.705 1.329 1.444 1.00 1.00
assign400 2.437 2.352 1.329 1.393 1.00 1.00
assign500 2.748 2.810 1.233 1.322 1.00 1.00
assign600 3.055 2.993 1.126 1.184 1.00 1.00
assign700 3.617 3.569 1.186 1.248 1.00 1.00
assign800 3.516 3.445 0.998 1.050 1.00 1.00
Average 2.884 2.821 1.259 1.338

4.2 Benchmark APs (OR Library)

In this section, we evaluate the performance of the three initialization methods in a collection of
test data sets taken from OR Library [7]. We choose eight dense APs from this collection. These
instances were proposed by Beasley [8]. The size of the instances range from 100 to 800 with step
100. Table 5 compares the number of iterations and the CPU time of the three initialization methods
in the selected data set. The value of the optimal solution for each of the instances is given in the
third column of Table 5. From the data in Table 5 we can clearly see that AKP is faster than the
other two methods on all test instances. The average speedup of the AKP compared with Bal and
SS is 2.821 and 1.338 times. Finally, in Table 6 we give the normalized ratios taken from Table 5.

5. Discussion on the initialization methods

From the computational results reported in Section 4, we make the following observations: (i)
the AKP initialization method is faster than the other two methods in terms of CPU time with
a speedup varying between 1.3 and 3.4 and (ii) the speed of AKP compared with the speed of
the other two methods increases with instance sizes. But, which factors are responsible for the
computational superiority of AKP initialization method? In this section, we give a theoretical
explanation that reveals the superiority of AKP.

The most important factor that determines the computational efficiency of an algorithm for APs
is the quality of the initial solution. In our case, EPSA uses as an initial solution the data structure
of a tree T . All the consequent trees that are computed during EPSA’s execution can be assigned
a numerical value α(T ). This value, called column level or stage of a solution T , denotes the
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‘distance’ of a solution T from the optimal solution. The iterations are grouped in to stages. The
last computed tree of the last stage is optimal. The optimal solution has always column level 0.
Every iteration of the EPSA aims at reducing the stage number of the current solution. Let us now
examine the column level of each one of the three initialization methods.

5.1 Balinski tree

To compute the column level of the Balinski tree we use the following procedure. For each column
node j we define the ‘level degree’ β(j), which is computed as follows [21]

β(j) =
{

d(j) − 2, if d(j) ≥ 3

0, otherwise
. (7)

The column level of the initial Balinski tree solution T1 is then defined [21] as:

α(T1) =
n∑

j=1

β(j) ≤ n − 1.

Hence, EPSA using Balinski tree should pass through n levels in the worst case in order to
reach the optimal solution.

5.2 Simple start

In Ref. [21], an algorithm for an m × n transportation problem that uses the same initial solution
is described. In that paper, it is stated that the column level of the initial solution is

∑n
i=1 bi ,

where bi is the demand of column node i. Hence, in the AP we have that the column level of the
simple start solution T2 used by EPSA is always n, as the demand of all the column nodes in an
assignment problem equals 1.

5.3 AKP

Finally, let us examine the column level of the AKP initial solution T3. To compute the column
level of the AKP tree, we use the same procedure used for the Balinski tree. Again it is

α(T3) =
n∑

j=1

β(j) ≤ n − 1,

where β(j) is computed from Equation (7). It is easy to see that the upper bound n − 1, in the
previous relation, is only achieved when all the column nodes except for one have degree 1. This
can be achieved only (i) if all the row nodes are connected with a single column node k and (ii)
if the input cost matrix C satisfies the relationship

cik = min
j=1,...,n

{cij },

for all i = 1, 2, . . . , n

Summarizing this analysis, we have that the column levels for the three initialization methods are

α(T1) = n and α(T2) = α(T3) ≤ n − 1,

which shows that the AKP initialization method is more closer to the optimal solution.
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Table 7. Number of stages for the OR Library assignment problems.

Bal SS AKP
Name n stages stages stages

assign100 100 69 100 9
assign200 200 143 200 39
assign300 300 237 300 57
assign400 400 320 400 96
assign500 500 406 500 153
assign600 600 496 600 202
assign700 700 582 700 273
assign800 800 671 800 328

Finally, given that the number of the stages of the second initialization method is always n,
one would expect that EPSA using this method would take more iterations to terminate. This is
something that does not hold in practice, as one can see from the experimental results in Section
4. This is due to the fact that the nature of the initial solution used by EPSA is not the same.
The initialization methods SS and AKP use a forest, whereas Bal initialization method uses a
tree. It is well known that a tree consists of a data structure difficult to handle. EPSA using Bal
initialization method visits only strong trees that are obtained from strongly feasible trees by
removing the feasibility requirement. In this case, it is time expensive to determine the pair of
leaving and entering edges involved in a single iteration. The other two initialization methods (SS
and AKP) maintain and update a forest rather than a single tree. Hence, there are also other criteria
to consider apart from the number of stages when analysing the computational performance of
the three initialization methods. In Table 7, we present the computed number of stages for the test
data sets taken from OR Library. The data in Table 7 shows that the third initialization method
(AKP) has the smallest number of stages over all benchmark instances. One can observe from
Table 7, that EPSA using SS initialization method always takes the maximum number of stages,
which is equal to n. But, why does the SS initialization method always perform better than the
Bal initialization method? After careful examination of the computational behaviour of the SS
initialization method, we observed that the SS initialization method always takes fewer iterations
per stage than the Bal method. Also, these iterations consist of the T ∗ tree, which has few nodes.
Specifically, the T ∗ tree consists of one or two nodes. Also, the same result holds for all the
instances used in our experimental study. Hence, by using the theory concerning the column level
of the separate tree solutions, we can justify the computational efficiency of EPSA using the AKP
initialization method.

6. Conclusions

In this paper, we presented a comparative computational study of three different initialization
methods for the EPSA. A crucial factor for the computational efficiency of algorithms for APs is
the initialization method used. The computational efficiency of an initialization method depends on
the distance between the initial and the optimal solutions and on the structure of the initial solution.

From the experimental evaluation, we obtain a precise ranking of the three initialization methods
presented. The initialization method using Balinski’s feasible tree (Bal) is the worst among the
three compared methods of all test instances. On the other hand, we observe clearly the superiority
of the initialization method AKP. In particular, AKP has the best performance on all benchmark
APs. The other initialization method, SS, is better than Bal but worse than AKP. Of all instances,
it is the second best initialization method.
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