Pinocchio: Nearly Practical Verifiable Computation

Bryan Pano, Jon Howell, Craig Gentry, Mariana Raykova

Presentated by Hui Zhang
Phd@ECE, UMD wayne.huizhang@gmail.com
Introduction

• Outsourcing complex computation to powerful servers is becoming popular.

• However, the workers that help the client to do the job is not always reliable: malicious or malfunctioning workers.

• Previous work has many shortages: impractical time consumption, function specific, not public verification, not zero-knowledge, etc.
Related works

- Function specific solutions [2–6] are often efficient, but only for a narrow class of computations. More general solutions often rely on assumptions that may not apply. For example, systems based on replication [1, 7, 8] assume uncorrelated failures, while those based on Trusted Computing [9–11] or other secure hardware [12–15] assume that physical protections cannot be defeated. Finally, the theory community has produced a number of beautiful, general purpose protocols [16–23] that offer compelling asymptotics. In practice however, because they rely on complex Probabilistically Checkable Proofs (PCPs) [17] or fully-homomorphic encryption (FHE) [24], the performance is unacceptable—verifying small instances would take hundreds to trillions of years. Very recent work [25–28] has improved these protocols considerably, but efficiency is still problematic, and the protocols lack features like public verification.
Contributions of the paper

1. An end-to-end system for efficiently verifying computation performed by one or more untrusted workers. This includes a compiler that converts “C” code into a format suitable for verification, as well as a suite of tools for running the actual protocol.

• We’ll see how to use the tool later
Contributions

2. Theoretical and systems-level improvements that bring time down by $5-7$ orders of magnitude, and hence into the realm of plausibility. The proof is only 288 bytes, regardless of the computation performed or the size of the inputs and outputs.

3. An evaluation on seven real C applications, showing verification faster than 32-bit native integer execution for some apps.
A public verifiable computation (VC) scheme allows a computationally limited client to outsource to a worker the evaluation of a function F on input u. The client can then verify the correctness of the returned result $F(u)$ while performing less work than required for native execution.
Public Verifiable Computation

\((EKF, VKF) \leftarrow \text{KeyGen}(F, 1^\lambda) : \)

\((y, \pi_y) \leftarrow \text{Compute}(EK_F, u) : \)

\(\{0, 1\} \leftarrow \text{Verify}(VK_F, u, y, \pi_y) : \)
Correctness, Security, Efficiency

- **Correctness** For any function F, and any input u to F, if we run $(EKF, VKF) \leftarrow \text{KeyGen}(F, 1^\lambda)$ and $(y, \pi_y) \leftarrow \text{Compute}(EKF, u)$, then we always get $1 = \text{Verify}(VKF, u, y, \pi_y)$.

- **Security** For any function F and any probabilistic polynomial-time adversary \mathcal{A}, $\Pr[(\hat{u}, \hat{y}, \hat{\pi}_y) \leftarrow \mathcal{A}(EKF, VKF) : F(\hat{u}) \neq \hat{y} \text{ and } 1 = \text{Verify}(VKF, \hat{u}, \hat{y}, \hat{\pi}_y)] \leq \text{negl}(\lambda)$.

- **Efficiency** KeyGen is assumed to be a one-time operation whose cost is amortized over many calculations, but we require that Verify is cheaper than evaluating F.
Zero-knowledge Verifiable Computation

• $F(u;w)$, of two inputs: the client’s input u and an auxiliary input w from the worker.

• A VC scheme is zero-knowledge if the client learns nothing about the worker’s input beyond the output of the computation.
Quadratic Programs

- GGPR[2] has shown how to compactly encode computations as quadratic programs, so as to obtain efficient VC and zero-knowledge VC scheme.

- Specifically, they show how to convert any arithmetic circuit into a comparably sized QAP, and any Boolean circuit into a comparably sized QSP.
Arithmetic Circuits and QAPs

An arithmetic circuit consists of wires that carry values from a field F and connect to addition and multiplication gates.
Definition (QAP)

- QAP: an encoding of an Arithmetic Circuit

A QAP Q over field \mathbb{F} contains three sets of $m+1$ polynomials $\mathcal{V} = \{v_k(x)\}$, $\mathcal{W} = \{w_k(x)\}$, $\mathcal{Y} = \{y_k(x)\}$, for $k \in \{0 \ldots m\}$, and a target polynomial $t(x)$. Suppose F is a function that takes as input n elements of \mathbb{F} and outputs n' elements, for a total of $N = n + n'$ I/O elements. Then we say that Q computes F if: $(c_1, \ldots, c_N) \in \mathbb{F}^N$ is a valid assignment of F’s inputs and outputs, if and only if there exist coefficients (c_{N+1}, \ldots, c_m) such that $t(x)$ divides $p(x)$, where:

$$p(x) = \left(v_0(x) + \sum_{k=1}^{m} c_k \cdot v_k(x) \right) \cdot \left(w_0(x) + \sum_{k=1}^{m} c_k \cdot w_k(x) \right) - \left(y_0(x) + \sum_{k=1}^{m} c_k \cdot y_k(x) \right).$$
Building a QAP

1. Pick an arbitrary root \(r_g \in F \) for each multiplication gate \(g \) in \(C \) and define the target polynomial to be \(t(x) = \prod g (x - r_g) \)

2. Associate an index \(k=\{1,2...,m\} \) to each input of the circuit and to each output from a multiplication gate

3. Define three sets \(V, W, Y \): \(V \) encode left input to each gate, \(W \) encode right input, \(Y \) encode the output
Building a QAP

\[
\begin{array}{ccc|ccc|ccc}
\text{Inputs} & (r_5, r_6) & (r_5, r_6) & (r_5, r_6) \\
C_1 & v_1(r_i) & (0,1) & w_1(r_i) & (0,0) & y_1(r_i) & (0,0) \\
C_2 & v_2(r_i) & (0,1) & w_2(r_i) & (0,0) & y_2(r_i) & (0,0) \\
C_3 & v_3(r_i) & (1,0) & w_3(r_i) & (0,0) & y_3(r_i) & (0,0) \\
C_4 & v_4(r_i) & (0,0) & w_4(r_i) & (1,0) & y_4(r_i) & (0,0) \\
\text{Output} & v_5(r_i) & (0,0) & w_5(r_i) & (0,1) & y_5(r_i) & (1,0) \\
C_5 & v_6(r_i) & (0,0) & w_6(r_i) & (0,0) & y_6(r_i) & (0,1) \\
\end{array}
\]

\[t(x) = (x - r_5)(x - r_6)\]
Boolean Circuits and QSPs

• Boolean circuits operate over bits, with bitwise gates for AND, OR, XOR, etc. GGPR propose Quadratic Span Programs (QSPs) as a custom encoding for Boolean circuits

• QSPs are superficially similar to QAPs, but because they only support Boolean wire values, they use only two sets of polynomials V and W.
Theoretical Refinements

• Originally, we build VC from strong QAPs

• Its main optimization is that we construct a VC scheme that uses a regular QAP, rather than a strong QAP.

• They also remove the need for the worker to compute gah(s), and hence the gasii2[d] terms from EK. Finally, we expand the expressivity and efficiency of the functions QAPs can compute by designing a number of custom circuit gates for specialized functions.
Performance

• Proof size: 288-byte, regardless of the size of the computation

• Proof verification: 5~7 orders of magnitude performance improvement over prior work.

• Proof generation: 19-60 x faster.

• Cutting the cost of both key and proof generation by more than 60%.
Performances

Figure 6: Performance Relative to Prior Schemes. Pinocchio reduces costs by orders of magnitude (note the log scale on the y-axis). We graph the time necessary to (a) verify and (b) produce a proof result for multiplying two N x N matrices.
Performances

Cheaper to verify than execute locally
Figure 1: Overview of Pinocchio’s Toolchain. **Pinocchio** takes a high-level C program all the way through to a distributed set of executables that run the program in a verified fashion. It supports both arithmetic circuits, via Quadratic Arithmetic Programs (§2.2.1), and Boolean circuits via Quadratic Span Programs (§2.2.2).
Steps:

• **First step: Generate a .arith file that describes the circuit you will be operating on.**
 ▫ 1) go to common/ , change corresponding parameters and name of file you wan to test in App.py
 ▫ 2) go to ccompiler/input, run ../src/build-test-matrix.py
 ▫ 3) run make -f make.matrix

• **Second step: Run Pinocchio using the arith file obtained from the previous step**
 ▫ pinocchio-v0.4.exe --qap --pv --bits 32 --mem 1 --file /path/to/.arith
Thank you!
Reference
