Introduction to the Two Special
Issues on Memory

Embedded systems differ from general-purpose systems in two main aspects.
First, the two systems are designed for very different purposes: while general-
purpose systems run a myriad of unrelated software packages, each with po-
tentially very different performance requirements and dynamic behaviors com-
pared to the rest, embedded systems perform a single function their entire
lifetime, and thus execute the same code day in, day out, until the system is
discarded or a software upgrade is performed. Second, while performance is the
primary (in many instances, the only) quality by which a general-purpose sys-
tem is judged, optimal embedded-system designs usually represent trade-offs
between several goals, including manufacturing costs (e.g., die area, testability,
etc.), energy consumption, and performance.

As a result, we see two very different design strategies. General-purpose
systems are typically overbuilt; by definition, they are expected by the con-
sumer to run all possible software applications thrown at them. Such sys-
tems are designed to handle the average case very well and the worst case
at least tolerably well. Were they optimized for any particular task, they would
likely become less-than-optimal for all dissimilar tasks; therefore, general-
purpose systems are optimized for nothing in particular. They make up for
this in raw performance and pure number-crunching. The average note-
book computer is capable of performing orders of magnitude more opera-
tions per second than that required by a word processor or email client—
tasks to which the average notebook is frequently relegated—but because the
general-purpose system may be expected to handle virtually anything at any
time, it must have the number-crunching ability of a supercomputer, just in
case.

On the other hand, because embedded systems are expected to handle only
one task, it is not only possible but highly beneficial to optimize an embed-
ded design for its one task. Thus, if general-purpose systems are overbuilt, the
goal for an embedded system is to be appropriately built. In addition, since
effort spent at design time is amortized over the life of a product, and many
embedded systems have long lifetimes (tens of years), many embedded design
houses will expend significant resources up front to optimize a design, employ-
ing techniques not generally used in general-purpose systems (e.g., compiler
optimizations that require many days or weeks to perform).

One of the most critical resources in embedded systems, one that receives
much of the attention of embedded-system engineers, CAD tool designers, com-
piler writers, and researchers, is the memory resource. Memory, whether SRAM
or DRAM, usually represents one of the more costly components in an embed-
ded system, especially if the memory is located on-CPU, since once the CPU is
fabricated, the memory size cannot be increased. In nearly all system-on-chip
designs, and in many microcontrollers as well, memory accounts for the lion’s
share of available die area; moreover, memory is one of the primary consumers

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002, Pages 2-5.



Introduction to the Two Special Issues on Memory . 3

of energy in a system, both on-CPU and off-CPU. As an example, it was shown
that, in many digital signal-processing applications, the memory system con-
sumes more of both energy and die area than the processor datapath. Clearly,
this is a resource worth optimizing.

The two special issues cover different aspects of optimizing memory usage
in embedded system design. The issues span a wide range of topics, which, we
hope, will portray to the reader the enormous breadth of the field of embedded
systems. The two issues are comprised of a survey of embedded memories, four
hardware-oriented articles, and four compiler- and synthesis-oriented articles.

The Papers

In “Energy-Aware Design of Embedded Memories: A Survey of Technologies,
Architecture and Optimization Techniques” (February 2003 issue), authors
Benini, Macii, and Poncino present a survey of hardware techniques to opti-
mize embedded memories—those designs in which memory is integrated onto
the same IC as the processor core, as is typical in systems-on-chip. They begin
with a discussion of memory technologies appropriate for such integration and
discuss techniques such as memory partitioning, special-purpose cache orga-
nizations, and mechanisms to improve bandwidth, such as compression. They
conclude with a discussion of technologies likely to appear in future designs.

Lee, Kim, and Weems (November 02 issue) present a novel cache organiza-
tion in their article, “Application-Adaptive Intelligent Cache Memory System.”
The scheme couples two things—a modified two-way set-associative cache that
has small blocks and a fully associative cache that has large blocks—to sup-
port variable-length data transfers ranging from the smaller block size to a
multiple of the larger block size. Additional hardware maintains information
about sequential accesses and keeps contiguous, frequently accessed data to-
gether in large logical blocks. The experiments show that both general-purpose
applications and streaming multimedia applications benefit from the ability to
use multiple block sizes dynamically. The scheme improves both the average
memory access time and the average energy consumption over more traditional
arrangements.

In “Low-Energy Off-Chip SDRAM Memory Systems for Embedded Applica-
tions,” authors Shim, Joo, Choi, Lee, and Chang (February 03 issue) present
a comprehensive study of where energy is consumed in an SDRAM system and
how to reduce that energy. They present a simulation-driven analytical model
that is backed up by experimental hardware verification, and break down the
energy consumed by the memory system. They investigate the effects of numer-
ous energy-saving techniques, some well-known, some novel, including differ-
ent bus encodings, various bit-mapping strategies, and DRAM model controls
(e.g., idling the DRAM). They show that, by combining the best of these tech-
niques, one can reduce the energy consumed in an external SDRAM system by
roughly a factor of two.

It has been known for some time that locality exists in the data stream. In
“Frequent Value Locality and Its Applications,” (November 02 issue) authors
Yang and Gupta explore another aspect of this behavior. They find that, at any

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.



4 . Introduction to the Two Special Issues on Memory

given moment, a relatively small number of distinct values are found in the
memory space. Moreover, this set of values remains fairly constant throughout
the application’s execution. They investigate two hardware means to exploit
this phenomenon. The first is a small-footprint cache to hold this “frequent
value” set; the cache is small and is written only occasionally, hence it has very
low energy consumption characteristics. The second mechanism is a one-hot
encoding scheme to transmit these frequent values over a bus using only one
bit of the data bus per value.

Java is being used in an increasing number of embedded and mobile de-
signs, and its garbage collection function presents interesting problems to solve
in these environments. Authors Chen, Shetty, Kandemir, Vijaykrishnan,
Irwin, and Wolczko (in the November 02 issue), in “Tuning Garbage Collection
for Reducing Memory System Energy in an Embedded Java Environment,” de-
sign tuning the garbage collector to reduce energy consumption when the mem-
ory system has multiple banks that can be idled independently of each other. For
example, when the garbage collector reclaims dead objects, it can compact the
remaining live objects into a minimum number of banks and disable all memory
banks that contain no live objects. When the application resumes execution, it
will consume less energy than if its data were spread out over all banks.

In “Synthesis of Synchronous Multimedia Applications” (February 03 issue)
Qu and Potkonjak examine the problem of configuring processors and mem-
ory hierarchies to minimize area in system-on-chip implementations for mul-
timedia applications. Their approach considers multimedia quality-of-service
requirements that include both latency constraints associated with each indi-
vidual data stream and synchronization constraints between the processing of
different streams.

In “Access Pattern-based Memory and Connectivity Architecture Explo-
ration” (February 03 issue), Grun, Dutt, and Nicolau develop design space
exploration techniques to customize the memory architecture for a given appli-
cation. These techniques use access patterns of the targeted application to drive
simultaneous configuration of memory modules and the processor/memory con-
nectivity architecture and generate Pareto curves in spaces involving cost,
power consumption, and performance.

The absence of hardware caches and use of heterogeneous memory modules
(e.g., off-chip vs. on-chip, SRAM vs. DRAM, RAM vs. ROM) are common charac-
teristics of memory systems for embedded applications. Avissar, Barua, and
Stewart, in “An Optimal Memory Allocation Scheme for Scratch-Pad Based
Embedded Systems” (Nov. 02 issue), tackle the problem of compiler-managed
data partitioning for multiple banks of heterogeneous memory. Their parti-
tioning techniques, based on an integer linear programming formulation, are
optimal among static approaches and incorporate the distribution of stack data
as well as globals.

The paper “System-level Exploration of Association Table Implementa-
tions in Telecom Network Applications” (Nov. 02 issue) by Ykman-Couvreur,
Lambrecht, van der Togt, Catthoor, and De Man, addresses memory
power optimization for managing association tables of records that are indexed
by keys. The optimization method targets a complex design space involving

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.



Introduction to the Two Special Issues on Memory . 5

multilayered table organizations with alternative configurations of primitive
data structures and key transformation strategies.

Acknowledgments

We would like to thank the authors of all submitted papers, including the au-
thors of papers that could not be included in these special issues. The tight
publication schedule did not allow for any extensive revisions, so many good
papers could not be included here due to the requests for such revisions by the
reviewers. We hope that those papers will appear in future issues of the ACM
Transactions on Embedded Computing Systems. We would also like to thank
the reviewers of the submitted papers for their rapid turn-around and thought-
ful comments. This issue would not have been possible without their hard work.
We hope that the readers find this issue enlightening and enjoyable.

Bruce Jacob
Shuvra Bhattacharyya

Reviewers

O. Avissar, F. Barat, R. Barua, S. S. Bhattacharyya, E. Brockmeyer, F. Catthoor,
C. Chakrabarti, N. Chang, W.-K. Chen, J. Cho, E. Daylight, V. Degalahal,
V. Delaluz, A. Dominguez, K. Gallivan, C. Ghez, P. Grun, R. Gupta,
T. V. K. Gupta, J. Hu, B. Jacob, M. Jayapala, S. Kambhampati, S. Kim,
A. Krishnaswamy, B. Li, L. Li, X. Liu, V. Mooney, Y. Paek, M. Potkonjak, G. Qu,
F. Rousseau, R. Sangireddy, E. Sha, M. A. Shalan, W.-T. Shiue, A. Somani,
A. Srivastava, D. Stewart, M. Tojima, F. Vahid, D. Verkest, F. Vermeulen,
D. Whalley, H. Yasuura, Z. Yi, C. Ykman-Couvreur, X. Yuan, X. Zhang, Y. Zhang.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.



