John S. Baras


A Randomized Gossip Consensus Algorithm on Convex Metric Spaces

I. Matei, Christoforos Somarakis and J. S. Baras

To appear in the proceedings of the 51st IEEE Conference on Decision and Control, pp. no. 7425-7430, Maui, Hawaii, USA, Dec 10-13, 2012.

Full Paper (.Pdf)


A consensus problem consists of a group of dynamic agents who seek to agree upon certain quantities of interest. This problem can be generalized in the context of convex metric spaces that extend the standard notion of convexity. In this paper we introduce and analyze a randomized gossip algorithm for solving the generalized consensus problem on convex metric spaces. We study the convergence properties of the algorithm using stochastic differential equations theory. We show that the dynamics of the distances between the states of the agents can be upper bounded by the dynamics of a stochastic differential equation driven by Poisson counters. In addition, we introduce instances of the generalized consensus algorithm for several examples of convex metric spaces.


Biography | Site Map | Contact Dr. Baras | Send Feedback | ©2008 ISR