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Abstract— In this paper, we investigate the design of optimal
state estimators for Markovian Jump Linear Systems. We con-
sider that the state has two components: the first component is
finite valued and is denoted as mode, while the second (continu-
ous) component is in a finite dimensional Euclidean space. The
continuous state is driven by a zero mean, white and Gaussian
process noise. The observation output has two components: the
first is the mode and the second is a linear combination of the
continuous state observed and zero mean, white Gaussian noise.
Both output components are affected by delays, not necessarily
equal. Our paradigm is to design optimal estimators for the
current state, given the current output observation. We provide
a solution to this paradigm by giving a recursive estimator for
the continuous state, in the minimum mean square sense, and
a finitely parameterized recursive scheme for computing the
probability mass function of the current mode conditioned on
the observed output. We show that when the mode is observed
with a greater delay then the continuous output component,the
optimal estimator nonlinear in the observed outputs.

I. INTRODUCTION

Markovian jump linear systems (MJLS) represents an im-
portant class of stochastic time-variant systems due to their
ability to model random abrupt changes that occur in a linear
plant structure. Linear plants with random time-delays [13]
or more general networked control applications [12], where
communication networks/channels are used to interconnect
remote sensors, actuators and processors, were shown to be
prone to MJLS modeling.

Motivated by a wide spectrum of applications, there has
been active research in the analysis [3], [7] and in the design
of controllers and estimators [6], [7], [9], [10] for Markovian
jump linear systems.

We will consider in this paper a MJLS suitable for tracking
problem which driven only by noise. The state of the system
has two components: the first component is finite valued and
is denoted as mode, while the second (continuous) component
is in a finite dimensional Euclidean space. The continuous
state is driven by some process process noise. The observation
output has two components: the first is the mode and the
second is a linear combination of the continuous state and
some measurement noise.

Existing results solve the problem of state estimation for
MJLS in the case of Gaussian noise for two main cases. In
the first case, when the entire sequence of output observations
up to the current time is considered known, the Minimum
Mean Square Error (MMSE) estimator is derived from the
Kalman filter for time varying systems [7], [10]. Off-line
computation of the filter is inadvisable due to the mode path
dependence of the filter’s gain. An alternative estimator filter,
whose gain depends only on the current mode and for which
off-line computations are feasible, is given in [8]. In the
second case, when only the continuous output observation
is known without any observation of the mode, the optimal
nonlinear filter is obtained by a bank of Kalman filters which
requires exponentially increasing memory and computation
with time [4]. To limit the computational requirements sub-
optimal estimators have been proposed in the literature [1],
[11], [2]. A linear MMSE estimator, for which the gain
matrices can be calculated off-line , is described in [9].

It may be the case in some applications that the two
components of the observation output do no reach the es-
timator computational block simultaneously, each of them
being affected by delays, not necessarily equals. For example,
the delayed mode observation setup could model networked
systems which rely on acknowledgments as a way to deal
with unreliable network links. These acknowledgments are not
necessarily received instantaneously, instead they are delayed
by one or more time-steps.

In this paper we address the problem of state estimation for
discrete-time MJLS with Gaussian noise and arbitrary delays
on the observation output components.

Notations and abbreviations: Consider a general random
process Zt . We denote by Zt

0 the history of the process from
0 up to time time t as Zt

0 = {Z0,Z1, ...,Zt}. A realization
of Zt

0 is referred by zt
0 = {z0,z1, ...,zt}. Let {Xt |Y t−h1

0 =
yt−h1

0 ,Mt−h2
0 = mt−h2

0 } be a vector valued random process.
We denote by f

Xt |Y
t−h1
0 M

t−h2
0

its probability density function

(p.d.f.). By µX
t|(t−h1,t−h2) and ΣX

t|(t−h1,t−h2) we will refer its
mean and covariance matrix respectively. We will compactly

978-1-4244-2271-5/08/$25.00 ©2008 IEEE 237



write the sum ∑
s
m0=1 ∑

s
m1=1 . . .∑s

mt=1 as ∑mt
0
. Assuming that

x is a vector in Rn, by the integral
∫

f (x)dx we understand∫
...
∫

f (x1, ...,xn)dx1...dxn, for some function f defined on Rn

and values in R.
Paper organization: This paper has four more sections

besides the introduction. After the formulation of the problem
in Section II, in Section III we introduce the main results.
Two corollaries will present the formulas for the optimal state
estimator (discrete and continuous components) in the mean
square sense. In Section IV we provide the proofs of these
corollaries together with some other supporting results. We
end the paper with some conclusion and comments on our
solution.

II. PROBLEM FORMULATION

In this section we formulate the problem for the MMSE
state estimation for MJLS in the case of delayed output
observations.

Definition 2.1: (Markovian jump linear system) Consider
n, m, q and s to be given positive integers together with a
transition probability matrix P∈ [0,1]s×s satisfying ∑

s
j=1 pi j =

1, for each i in the set S = {1, . . . ,s}, where pi j is the
(i, j) element of the matrix P. Consider also a given set of
matrices {Ai}s

i=1, {Ci}s
i=1 with Ai ∈ Rn×n and Ci ∈ Rq×n. In

addition consider two independent random variable X0 and
M0 taking values in Rn and S , respectively. Given the vector
valued random processes Wt and Vt taking values in Rn and
Rq respectively, the following stochastic dynamic equations
describe a discrete-time Markovian jump linear system:

Xt+1 = AMt Xt +Wt (1)

Yt = CMt Xt +Vt . (2)

The state of the system is represented by the doublet (Xt ,Mt)
where Xt ∈ Rn is the state continuous component and Mt
is the discrete component. The process Mt is a Markovian
jump process taking values in S with conditional probabilities
given by pr(Mt+1 = j|Mt = i) = pi j. The observation output is
given by the doublet (Yt ,Mt), where Yt ∈Rq is the continuous
component. Throughout this paper we will consider Wt and
Vt to be independent identically distributed (i.i.d.) Gaussian
noises with zero means and identity covariance matrices.
The initial condition vector X0 has a Gaussian multivariate
distribution with mean µX0 and covariance matrix ΣX0 which,
together with the Markovian process Mt and the noises Wt , Vt ,
are assumed independent for all time instants t.

For simplicity, throughout this paper we will differentiate
among the different components of the MJLS state and ob-
servation output as following. We will refer to Xt as the state
vector and to Mt as mode. If known, we will call Yt as output
observation and Mt and mode observation.

We can now proceed with the formulation of our problem
of interest.

Problem 2.1: (MMSE state and mode estimators for MJLS
with delayed output and mode observations) Consider a

Markovian jump linear system as in Definition 2.1. Let
h1 and h2 be two positive integers representing how long
the output and the mode observations are delayed. Assum-
ing that the state vector Xt and the mode Mt are not
known, and that at the current time the data available con-
sists in the output observations up to time t − h1 (Y t

0 =
yt−h1

0 ) and mode observations up to time t − h2 (Mt−h2
0 =

mt−h2
0 ) we want to derive the MMSE estimators for the

state vector Xt and the mode indicator function 1{Mt=i}, i ∈
S . More precisely, considering the optimal solution of the
MMSE estimators ([14]) we want to compute the following:
MMSE state estimator:

X̂h1,h2
t = E[Xt |Y t−h1

0 = yt−h1
0 ,Mt−h2

0 = mt−h2
0 ], (3)

MMSE mode indicator function estimator:

1̂
h1,h2
{Mt=mt} = E[1{Mt=mt}|Y

t−h1
0 = yt−h1

0 ,Mt−h2
0 = mt−h2

0 ], (4)

where the indicator function 1{Mt=mt} is one if Mt = mt and
zero otherwise.

Remark 2.1: The problem formulated above encompasses
a high degree of generality because the delays affecting the
output and mode observations may take arbitrary values. Of
course, their magnitude and the ordering relation between
the delays will affect the form and the complexity of the
estimators.

Remark 2.2: Obtaining an MMSE estimation of the mode
indicator function allows us to replace any mode dependent
function g(Mt) by an estimation ̂g(Mt) = ∑i∈S g(i)1̂{Mt=i}.
We are interested in an estimation of the indicator function
rather than of the mode itself because the MMSE estimator
of the mode can produce real values which may have limited
usefulness;

Remark 2.3: Considering the definition of the indicator
function, the MMSE mode indicator function estimator can be
also written as: 1̂h1,h2

{Mt=mt} = pr(Mt = mt |Y t−h1
0 = yt−h1

0 ,Mt−h2
0 =

mt−h2
0 ). Then we can also produce a marginal maximal a poste-

riori mode estimation expressed in terms of the indicator func-
tion: M̂h1,h2

t = argmaxi∈S pr(Mt = mt |Y t−h1
0 = yt−h1

0 ,Mt−h2
0 =

mt−h2
0 ) = argmaxmt∈S 1̂

h1,h2
{Mt=mt}.

III. MAIN RESULT

In this section we present the solution for Problem 2.1.
We introduce here two corollaries describing the formulas
for computing the vectors state and mode indicator function
estimators. The proofs of these corollaries are deferred for
the next section. Let us first remind ourselves some properties
of the Kalman filter for MJLS synthesized in the following
theorem.

Theorem 3.1: Consider a discrete MJLS as in Definition
2.1. The random processes {Xt |Y t

0 = yt
0Mt

0 = mt
0}, {Xt |Y t−1

0 =
yt−1

0 Mt−1
0 = mt−1

0 } and {Yt |Y t−1
0 = yt−1

0 Mt
0 = mt

0} are Gaussian
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distributed with the means and covariance matrices calculated
by the following recursive equations:

Σ
X
t|(t,t)

−1 = Σ
X
t|(t−1,t−1)

−1 +CT
mtCmt (5)

µ
X
t|(t,t) = Σ

X
t|(t,t)

[
CT

mt yt +Σ
X
t|(t−1,t−1)

−1
µ

X
t|(t−1,t−1)

]
(6)

µ
X
t|(t−1,t−1) = Amt−1 µ

X
t−1|(t−1,t−1) (7)

Σ
X
t|(t−1,t−1) = Amt−1Σ

X
t−1|(t−1,t−1)A

T
mt−1

+ In (8)

µ
Y
t|(t−1,t) = Cmt µ

X
t|(t−1,t−1) (9)

Σ
Y
t|(t−1,t) = Cmt Σ

X
t|(t−1,t−1)C

T
mt + Iq, (10)

with initial conditions µX
0|(−1,−1) = µX0 and ΣX

0|(−1,−1) = ΣX0 .

The above theorem contains in equations (5)-(8) an equivalent
form of the Kalman filter for MJLS. Besides the Kalman filter
equations we added the equations (9)-(10) as they will be used
in what follows. Derivation of the Kalman filter equation can
be found in [8], [7] for example.

Our main result consists in Corollaries 3.1 and 3.2 which
show the algorithmic steps necessary to compute the MMSE
state and mode indicator estimators for MJLS when the
observations of the outputs and modes are affected by some
arbitrary (but fixed) delays.

Corollary 3.1: Given a MJLS as in Definition 2.1 and two
positive integers h1 and h2, the MMSE state estimator from
the Problem 2.1 is given by the following formulas:

X̂h1,h2
t =

∑mt−1
t−h2+1

∏
h2−1
k=1 pmt−k−1mt−k µX

t|(t−h1,t−1) 1 < h2 ≤ h1

µX
t|(t−h1,t−1) 1 = h2 ≤ h1

µX
t|(t−h1,t−1) 0 = h2 < h1

∑mt−h1
t−h2+1

ct(m
t−h1
t−h2+1)µX

t|(t−h1,t−h1)
0,1 = h1 < h2

∑mt−1
t−h2+1

∏
h1−1
k=1 pmt−k−1mt−k ct(m

t−h1
t−h2+1)µX

t|(t−h1,t−1) 1 < h1 < h2

where µX
t|(t−h1,t−1) (and µX

t|(t−1,t−1)) is computed by the
recurrence:

µ
X
t|(t−h1,t−1) =

(
h1

∏
k=1

Amt−k

)
µ

X
t−h1|(t−h1,t−h1) (11)

for each of the unknown mode paths represented by a term
in the above sums. The means µX

t−h1|(t−h1,t−h1) (or µX
t|(t,t)) are

calculated according to the Kalman filter in equations (5)-(8)
and the coefficients ct(m

t−h1
t−h2+1) are given by:

ct

(
mt−h1

t−h2+1

)
=

α(mt−h1
t−h2+1)

∑
m

t−h1
t−h2+1

α(mt−h1
t−h2+1)

, (12)

where

α(mt−h1
t−h2+1) =

h2−h1−1

∏
k=0

pmt−h1−k−1mt−h1−k×

× f
Yt−h1−k |Y

t−h1−k−1
0 M

t−h1−k
0

(yt−h1−k|yt−h1−k−1
0 mt−h1−k

0 )

and where f
Yt−h1−k |Y

t−h1−k−1
0 M

t−h1−k
0

(yt−h1−k|yt−h1−k−1
0 mt−h1−k

0 )

is the Gaussian p.d.f. of the random process
{Yt−h1−k|Y t−h1−k−1

0 Mt−h1−k
0 } whose mean and covariance

matrix are computed according to equations (9)-(10)
introduced in Theorem 3.1.

Corollary 3.2: Given a MJLS as in Definition 2.1 and
two positive integers h1 and h2, the MMSE mode indicator
estimator from Problem 2.1 is computed according to the next
formulas:

1̂
h1,h2
{Mt=mt} =

=


∏

h2
k=1 pmt−kmt−k+1 0 < h2 ≤ h1

∑mt−1
t−h2+1

ct(mt
t−h2+1) 0 = h1 < h2

∑mt−1
t−h2+1

∏
h1
k=1 pmt−kmt−k+1ct(m

t−h1
t−h2+1) 0 < h1 < h2

where ct(m
t−h1
t−h2+1) are computed according to (12).

These results can be regarded as a generalization of the
estimation problem for MJLS. Since we assumed the delays to
be fixed, the algorithms have a polynomial complexity. How-
ever the complexity increases exponentially with the values
of the delays which is in accord with the results concerning
the Kalman filter for MJLS with no mode observations [4].
We can observe that the ordering of the delays affecting the
observation plays a major role in the number of operations of
the algorithms and their form. When the delay h2 affecting
the modes observations is greater then the delay h1 the
algorithms become more complex. This is mainly due to the
fact that the missing modes are indirectly observed through
the output observations. We also notice that in this case
the estimators become nonlinear in the outputs due to the
coefficients ct(m

t−h1
t−h2+1). In Corollaries 3.1 and 3.2 we were

not concern by the numerical efficiency of the algorithms. It
can be noticed however the at the current time the algorithm
uses information computed at previous steps indicating that
an economy in memory space and computation power can be
attained.Corollaries 3.1 and 3.2 are a consequence of a set of
results that will be detailed in the next section.

IV. PROOF OF THE MAIN RESULT

In this section we introduce a series of theorems which
will pave the road for proving the main results presented in
Section III. In Theorem 4.1 we characterize the statistical
properties of the random process {Xt |Y t−h

0 = yt−h
0 ,Mt−1

0 =
mt−1

0 } where h is a positive integer. This result is related
to the case of state estimation when the output observations
are delayed but the modes are all known. In Theorem 4.2 we
analyze the mirrored case presented in Theorem 4.1, i.e. we
characterize the statistical properties of the random process
{Xt |Y t

0 = yt
0,M

t−h
0 = mt−h

0 }. From the later mentioned theorem
we will derive the the MMSE state and mode indicator
estimators when all the output observations are known but
the mode observations are delayed. Finally in Theorem 4.3
we examine the statistical properties of the random process
{Xt |Y t−h1

0 = yt−h1
0 ,Mt−h2

0 = mt−h2
0 } where h1 and h2 are some
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known arbitrary positive integer values. This last theorem
will provide the formulas for the state and mode indicator
MMSE estimators when the output and mode observations are
arbitrarily delayed.

To simplify the proofs of Theorems 4.1 and 4.2 we introduce
the following corollary presenting properties of the p.d.f of a
linear combination of Gaussian random vectors.

Corollary 4.1: Consider two Gaussian random vector V and
X of dimension m and n respectively, with means µV = 0
and µX and covariance matrices ΣV = Im and ΣX respectively.
Let Y be a Gaussian random vector resulted from a linear
combination of X and V , Y = CX +V where C is a matrix of
appropriate dimensions. Then the following holds:∫

Rn
fV (y−Cx) fX (x)dx = fY (y), (13)

where fY (y) is the multivariate Gaussian p.d.f. of Y with
parameters µY = CµY and ΣY = CΣXCT + Im. Also,

fV (y−Cx) · fX (x) = f̃X̃ (x) · fY (y), (14)

where f̃X̃ (x) is a Gaussian p.d.f. with parameters µX̃ =
ΣX̃ (CT y+Σ

−1
X µX ), Σ

−1
X̃ = Σ

−1
X +CTC and, fY (y) being defined

in (13).

Theorem 4.1: Consider a discrete MJLS as in Definition
2.1. Let h be a known strictly positive integer value. Then the
p.d.f. of the random process {Xt |Y t−h

0 = yt−h
0 Mt−1

0 = mt−1
0 } is

Gaussian with mean computed by:

µt|t−h,t−1 =

(
h

∏
k=1

Amt−k

)
µ

X
t−h|(t−h,t−h) (15)

and covariance matrix given by the recurrence:

Σ
X
t−k|(t−h,t−k) = Amt−k−1Σ

X
t−k−1|(t−h,t−k−1)A

T
mt−k−1

+ In (16)

for k ∈ {h− 1,h− 2, ...,1,0} and with initial covariance ma-
trix ΣX

t−h|t−h,t−h; µX
t−h|(t−h,t−h) and ΣX

t−h|t−h,t−h are calculated
according to the Kalman filter described in equations (5)-(8).

Proof: The Gaussianity is shown by induction. Assume
that for a k between {0,1, ...,h− 1}, fXt−k−1|Y t−h

0 Mt−k−1
0

is a
Gaussian p.d.f. Then the fXt−k|Y t−h

0 Mt−k
0

ca be expressed as:

fXt−k|Y t−h
0 Mt−k

0
(xt−k|yt−h

0 mt−k
0 ) =

=
∫
Rn

fXt−kXt−k−1|Y t−h
0 Mt−k

0
(xt−k, x̃t−k−1|yt−h

0 mt−k
0 )dx̃t−k−1 =

=
∫
Rn

fXt−k|Xt−k−1Mt−k−1
(xt−k|xt−k−1mt−k−1)×

× fXt−k−1|Y t−h
0 Mt−k−1

0
(xt−k−1|yt−h

0 mt−k−1
0 )dxt−k−1

Using the (13) from Corollary 4.1 we conclude that
fXt−k|Y t−h

0 Mt−k
0

is Gaussian p.d.f. with mean given by

µ
X
t−k|(t−h,t−k) = Amt−k−1 µ

X
t−k−1|(t−h,t−k−1)

and covariance matrix

Σ
X
t−k|(t−h,t−k) = Amt−k−1Σ

X
t−k−1|(t−h,t−k−1)A

T
mt−k−1

+ In

Iterating over k∈ {h−1,h−2, ...,1,0} we obtain the equations
(15) and (16).

Theorem 4.2: Consider a discrete MJLS as in Definition 2.1
and let h be a known positive integer value. Then the p.d.f. of
the random process {Xt |Y t

0 = yt
0Mt−h

0 = mt−h
0 } is a mixture of

Gaussian probability densities. More precisely:

fXt |Y t
0Mt−h

0
(x|yt

0mt−h
0 ) = ∑

mt
t−h+1

ct(mt
t−h+1) fXt |Y t

0Mt
0
(x|yt

0,m
t
0)

(17)
where ct(mt

t−h+1) = fMt
t−h+1|Y

t
0Mt−h

0
(mt

t−h+1|yt
0mt−h

0 ) are the
(time varying) mixture coefficients and fXt |Y t

0Mt
0
(x|yt

0,m
t
0) is the

gaussian p.d.f. of the process {Xt |Y t
0 = yt

0,M
t
0 = mt

0} whose
statistics is computed according to the recursions (5)-(8).
The coefficients ct(mt

t−h+1) are computed by the following
formula:

ct(mt
t−h+1) =

∏
h−1
k=0 pmt−k−1mt−k

fYt−k |Y
t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )

∑mt−k
t−h+1

∏
h−1
k=0 pmt−k−1mt−k

fYt−k |Y
t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )
(18)

where fYt−k |Y
t−k−1
0 Mt−k

0
is the Gaussian p.d.f. of the process

{Yt−k|Y t−k−1
0 = yt−k−1

0 ,Mt−k
0 = mt−k

0 } whose mean and covari-
ance matrix are expressed in (9) and (10).

Proof: Using the law of marginal probabilities we get:

fXt |Y t
0 Mt−h

0
(x|yt

0mt−h
0 ) = ∑

mt
t−h+1

fXt Mt
t−h+1|Y t

0 Mt−h
0

(x,mt
t−h+1|y

t
0mt−h

0 ) =

= ∑
mt

t−h+1

fXt |Y t
0 Mt

0
(x|yt

0,m
t
0) fMt

t−h+1|Y t
0 Mt−h

0
(mt

t−h+1|y
t
0mt−h

0 ) =

= ∑
mt

t−h+1

ct(mt
t−h+1) fXt |Y t

0 Mt
0
(x|yt

0,m
t
0)

Thus we obtained (17). All you are left to do is to compute
coefficients of this linear combination. By applying the Bayes
rule we get:

fMt
t−h+1|Y

t
0Mt−h

0
(mt

t−h+1|yt
0mt−h

0 ) =
fY t

0Mt
0
(yt

0mt
0)

∑mt
t−h+1

fY t
0Mt

0
(yt

0mt
0)

(19)

The p.d.f. fY t
0Mt

0
can be expressed recursively as:

fY t
0Mt

0
(yt

0mt
0) =

∫
Rn

fXtY t
0Mt

0
(xtyt

0mt
0)dxt =

=
∫
Rn

fYt |Xt Mt (yt |xtmt) fXt |Y t−1
0 Mt−1

0
(xt |yt−1

0 mt−1
0 )dxt

pmt−1mt fY t−1
0 Mt−1

0
(yt−1

0 mt−1
0 ).

Applying (13) we obtain:

fY t
0Mt

0
(yt

0mt
0)= fYt |Y t−1

0 Mt
0
(yt |yt−1

0 mt
0)pmt−1mt fY t−1

0 Mt−1
0

(yt−1
0 mt−1

0 )

Using this recursive expression we get:

fY t
0 Mt

0
(yt

0mt
0) =
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=
h−1

∏
k=0

pmt−k−1mt−k
fYt−k |Y

t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 ) fYt−h

0 Mt−h
0

(yt−h
0 mt−h

0 )

By replacing the previous expression in (19) we obtain the
coefficients ct(mt

t−h+1) expressed in (18). We can conclude de
proof by making the observations that the p.d.f. fYt−k|Y t−k−1

0 Mt−k
0

is completely characterized in Theorem 3.1, equation (9) and
(10).

Theorem 4.3: Consider a discrete MJLS as in
Definition 2.1 and let h1 and h2 be two known non-
negative integers. Then the p.d.f. of the random process
{Xt |Y t−h1

0 = yt−h1
0 Mt−h2

0 = mt−h2
0 } is given by the following

formula:

f
Xt |Y

t−h1
0 M

t−h2
0

(xt |yt−h1
0 mt−h2

0 ) =

Case 1: h1 ≥ h2, h2 > 1

= ∑
mt−1

t−h2+1

h2−1

∏
k=1

pmt−k−1mt−k f
Xt |Y

t−h1
0 Mt−1

0
(xt |yt−h1

0 mt−1
0 ) (20)

Case 2: (h1 ≥ h2, h2 = 1) or (h1 > h2, h2 = 0)

= f
Xt |Y

t−h1
0 Mt−1

0
(xt |yt−h1

0 mt−1
0 ) (21)

Case 3: h1 < h2, (h1 = 0 or h1 = 1)

= ∑
m

t−h1
t−h2+1

ct(m
t−h1
t−h2+1) f

Xt |Y
t−h1
0 M

t−h1
0

(xt |yt−h1
0 mt−h1

0 )

Case 4: h1 < h2, h1 > 1

= ∑
mt

t−h2+1

h1−1

∏
k=1

pmt−k−1mt−k ct(m
t−h1
t−h2+1) f

Xt |Y
t−h1
0 Mt−1

0
(xt |yt−h1

0 mt−1
0 )

(22)
where the p.d.f. f

Xt |Y
t−h1
0 Mt−1

0
is characterized in Theorem 4.1

and the coefficients ct(m
t−h1
t−h2+1) are given by

ct

(
mt−h1

t−h2+1

)
=

α(mt−h1
t−h2+1)

∑
m

t−h1
t−h2+1

α(mt−h1
t−h2+1)

(23)

where

α(mt−h1
t−h2+1) =

h2−h1−1

∏
k=0

pmt−h1−k−1mt−h1−k×

× f
Yt−h1−k |Y

t−h1−k−1
0 M

t−h1−k
0

(yt−h1−k|yt−h1−k−1
0 mt−h1−k

0 )

with f
Yt−h1−k |Y

t−h1−k−1
0 M

t−h1−k
0

(yt−h1−k|yt−h1−k−1
0 mt−h1−k

0 )

the Gaussian p.d.f. of the random process
{Yt−h1−k|Y t−h1−k−1

0 Mt−h1−k
0 } whose mean and covariance

matrix are computed using recursions (9)-(10).

Proof: We will start the proof with Cases 1 and 4 since
they are the most general. The rest of the cases are derived
immediately from the fore-mentioned ones. Proof of Case 1
h1 ≥ h2, h2 > 1:

f
Xt |Y

t−h1
0 Mt−h2

0
(xt |yt−h1

0 mt−h2
0 ) =

= ∑
mt−1

t−h2+1

f
Xt Mt−1

t−h2+1|Y
t−h1
0 Mt−h2

0
(xtmt−1

t−h2+1|y
t−h1
0 mt−h2

0 ) =

∑
mt−1

t−h2+1

f
Xt |Y

t−h1
0 Mt−1

0
(xt |yt−h1

0 mt−1
0 ) f

Mt−1
t−h2+1|Y

t−h1
0 Mt−h2

0
(mt−1

t−h2+1|y
t−h1
0 mt−h2

0 )

Observing that {Mt−1
t−h2+1|Y

t−h1
0 Mt−h2

0 } = {Mt−1
t−h2+1|M

t−h2
0 }

and that

f
Mt−1

t−h2+1|Y
t−h1
0 Mt−h2

0
(mt−1

t−h2+1|y
t−h1
0 mt−h2

0 ) =
h2−1

∏
k=1

pmt−k−1mt−k

we conclude the proof of this case. Proof of Case 4 h1 <

h2, h1 > 1:
f
Xt |Y

t−h1
0 Mt−h2

0
(xt |yt−h1

0 mt−h2
0 ) =

= ∑
mt−1

t−h2+1

f
Xt Mt−1

t−h2+1|Y
t−h1
0 Mt−h2

0
(xtmt−1

t−h2+1|y
t−h1
0 mt−h2

0 ) =

∑
mt−1

t−h2+1

f
Xt |Y

t−h1
0 Mt−1

0
(xt |yt−h1

0 mt−1
0 )×

× f
Mt−1

t−h2+1|Y
t−h1
0 Mt−h2

0
(mt−1

t−h2+1|y
t−h1
0 mt−h2

0 ).

We separate the last p.d.f. in the above sum in two terms:

f
Mt−1

t−h2+1|Y
t−h1
0 Mt−h2

0
(mt−1

t−h2+1|y
t−h1
0 mt−h2

0 ) =

= f
Mt−1

t−h1+1|Y
t−h1
0 Mt−h1

0
(mt−1

t−h1+1|y
t−h1
0 mt−h1

0 )×

× f
Mt−h1

t−h2+1|Y
t−h1
0 Mt−h2

0
(mt−h1

t−h2+1|y
t−h1
0 mt−h2

0 )

From the Markovian property of the process Mt the first term
is:

f
Mt−1

t−h1+1|Y
t−h1
0 Mt−h1

0
(mt−1

t−h1+1|y
t−h1
0 mt−h1

0 ) =

= f
Mt−1

t−h1+1|M
t−h1
0

(mt−1
t−h1+1|m

t−h1
0 ) =

h1−1

∏
k=1

pmt−k−1mt−k .

We can notice that f
M

t−h1
t−h2+1|Y

t−h1
0 M

t−h2
0

is a shifted (by h1)

version of the coefficients ct introduced in the Theorem 4.2.
Thus:

f
Mt−h1

t−h2+1|Y
t−h1
0 Mt−h2

0
(mt−h1

t−h2+1|y
t−h1
0 mt−h2

0 ) = ct(m
t−h1
t−h2+1)

where ct(m
t−h1
t−h2+1) are given by (23).

Let us now address the particular cases 2,3. When h1 ≥
h2, h2 = 1, (21) follows trivially. If h1 > h2, h2 = 0 we obtain
(21) again from the fact that {Xt |Y t−h1

0 Mt
0}= {Xt |Y t−h1

0 Mt−1
0 }

since we have at most t− 1 output measurements and since
Xt does not depend on Mt ; in Case 3, for h1 < h2, h1 = 0
we satisfy the conditions of Theorem 4.2. For h1 < h2, h1 = 1
we follow the same lines as in the Case 4 with the difference
that since h1 = 1 there will be no products of probabilities
multiplying the terms in the sum.

Corollary 3.1 Proof: The proof follows from the
linearity of the expectation operator and by applying the results
about the p.d.f. f

Xt |Y
t−h1
0 M

t−h2
0

detailed in Theorem 4.3 together
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with the properties of fXt |Y t−h
0 Mt−1

0
and fXt |Y t

0Mt−h
0

shown in
Theorems 4.1 and 4.2.

Corollary 3.2 Proof: From the optimal estimator
formula we have:

1̂
h1,h2
{Mt=mt} = E[1{Mt=mt}|Y

t−h1
0 = yt−h1

0 ,Mt−h2
0 ] =

= f
Mt |Y

t−h1
0 M

t−h2
0

(mt |yt−h1
0 mt−h2

0 )

In the case h1≥ h2 from the Markovian property of the process
Mt and from the fact that {Mt |Y t−h1

0 Mt−h2
0 }= {Mt |Mt−h2} we

obtain:

1̂
{Mt=mt |Y

t−h1
0 =y

t−h1
0 M

t−h2
0 =m

t−h2
0 }

=
h2−1

∏
k=1

pmt−k−1mt−k

In the case when h1 < h2, h1 ≥ 1 we have:

1̂
{Mt=mt |Y

t−h1
0 =y

t−h1
0 M

t−h2
0 =m

t−h2
0 }

=

= ∑
mt−1

t−h2+1

f
Mt−1

t−h2+1|Y
t−h1
0 M

t−h2
0

(mt
t−h2+1|y

t−h1
0 mt−h2

0 ) =

= ∑
mt−1

t−h2+1

f
Mt

t−h1+1|Y
t−h1
0 M

t−h1
0

(mt
t−h1+1|y

t−h1
0 mt−h1

0 )×

× f
M

t−h1
t−h2+1|Y

t−h1
0 M

t−h2
0

(mt−h1
t−h2+1|y

t−h1
0 mt−h2

0 ) =

= ∑
m

t−h1
t−h2+1

(
h1−1

∏
k=0

pmt−k−1mt−k

)
ct(m

t−h1
t−h2+1)

where the last line was deduced from a similar analysis as
in the proof of Theorem 4.3. When h1 < h2 and h1 = 0 we
obtain a formula as in the previous lines, with the difference
that there will be no longer any product of probabilities.

V. CONCLUSIONS

In this paper we considered the problem of state estimation
for MJLS when the two components of the observation output
are affected by delays. We gave the formulas for the optimal
estimators for both the continuous and discrete components of
the state.

These formulas admit recursive implementation and have
polynomial complexity and therefore are feasible for practical
implementation. However the different ordering between the
delays affects the complexity and structure of the estimators.
An important observation is that when we have less mode
observations then output observations the estimators become
nonlinear in the outputs. Our problem setup can be viewed
as a generalization of the state estimation problem for MJLS
since represents the link between the main cases addressed in
the literature: availability of mode and output observations and
availability of only output observations.
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