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Abstract— We consider distributed collaborative control and
sensing as they frequently arise in networked control systems.
The algorithms are constrained to use local information. We
show by experiments that the performance of such distributed,
local information based algorithms, can depend dramatically
on the structure of the underlying topology (connectivity
pattern) of the agents. We investigate the speed of convergence,
accuracy, robustness and resiliency of such algorithms including
consensus problems. We consider several graphs that can be
used to represent collaborative control and communication
patterns. We first show that small world topologies offer several
advantages from a perspective of a favorable tradeoff between
performance of collaborative behaviors vs costs of collaborative
behaviors (or equivalently constraints for collaboration). Sec-
ond, we show that a two level hierarchy consisting of carefully
located and controlled ’leaders’ at the higher level and the
rest of the agents at the lower level, can provide a very
efficient communication pattern with substantial improvement
of performance. We close with a description of the possible
topologies for this two tier structure and their performance.

I. INTRODUCTION

In recent years the study of distributed algorithms for
jointly achieving a common goal has received much attention
in the control community. Collaborative control of groups of
robots, flocking schemes, gossip algorithms and cooperation
in sensor coverage are examples of different applications
of distributed algorithms. The agents are provided with
simple sets of decision making algorithms or dynamics,
such that each agent take an action using its local infor-
mation. The emergence of a desired global behavior is the
goal of such schemes. The effectiveness of these schemes
depends on three important factors: 1) The speed of con-
vergence; 2) Robustness to failure of agents/connections; 3)
Energy/communication efficiency. All of these factors cannot
be necessarily achieved at once. On the contrary there is a
trade off in achieving these objectives. An important point to
notice isthat the speed of convergence and robustness depend
on both the structure of the network and the dynamics of the
agents.

The subject of dynamic systems on graphs has aso
gained attention in other communities. Following the popular
small world model of Watts and Strogatz and the preferen-
tial attaching model of Barabasi and Albert, many efforts
have been dedicated to construct a scientific framework for
studying networks and the processes running on them. The
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main interest of the ongoing research in this community
is to understand the formation and function of real world
networks. The networks under study come from different
branches of science and include the World Wide Web, social
networks, and biological systems.

The two research areas explained above have some over-
lap. Although the results in network science are usually
asymptotic, they can provide control researchers with useful
insight. As an example, Durrett [6] studies mixing times
of random walks on different types of small world and
random graphs. Thisis closely connected to the convergence
rate of average consensus schemes considered in the control
literature.

We address some structural properties of distributed
schemes running on networks. We first show that the perfor-
mance of distributed, local information based algorithms can
be highly dependent on the structure of the underlying graph.
In the case of consensus problems, we show that small world
topologies offer a favorable tradeoff between performance
(convergence speed) versus cost of collaboration (connectiv-
ity cost). We then generalize the concept of social leaders
introduced by Blondel et a. [1] to classify the agents of
more importance in a network. The two level hierarchy can
provide a very efficient communication pattern. We utilize a
distributed fixed point scheme to provide nodes with global
information on which leaders they have more access to.

Il. THE IMPORTANCE OF BEING WELL CONNECTED

In this section we study the importance of being well
connected in distributed algorithms. The first two examples
given in this section demonstrate how being well connected
can serve agents' selfish purposes. The next examples show
how being well connected helps the overal network to be
able to perform distributed algorithms in a faster and more
robust manner.

A. Local majority voting

We start with a classic example by Peleg [14] which
shows that in voting schemes a smal number of well
connected nodes can determine the outcome of the process.
Consider n citizens each living on a vertex of a graph. Each
citizen has an opinion about voting Yes or No on a contro-
versia subject. However, citizens observe a rule by which
they first ask privately their neighbors opinions. Each person
then casts their vote. They will cast “Yes'( resp. “No”) if
the majority of their neighbors -including themselves- are
“Yes-voters’ (resp. “No-voters’). The question is what is the
minimum number of “No-voters’ that can guarantee a “No”



Fig. 1. Two “No-voters’ are enough to control the local majority polls.

outcome. As shown in Figure 1 the answer is 2. Every one
of the n— 2 “Yes- voters’ should change its vote, because of
having two “No-voters’ in their neighborhood.

It is worthwhile to notice that all the “ Yes-voters’ observe
a 2 to 1 maority of “No-voters’ in their neighborhood.
However, each “No-voter” observes a huge majority of “Yes-
voters’ in their neighborhood. Now, consider that the nodes
follow the polling rule iteratively. In this case, each node will
oscillate between Yes and No. However, if the “No-Voters’
fail to observe the rule, the iteration will converge and all
the nodes will vote No after the first iteration.

Peleg also shows that for large n, a negligible minority of
2,/n “No-voters’ can force al the voters to decide to vote
No in just one iteration. This can be achieved by a clique
of well connected “No-voters’ who are attached to groups
of badly connected “Yes-voters’ as in Figure 2. In this case,
by following the rules the “No-voters’ can force the “Yes
voters’ to change their vote while maintaining their own No
votes. Therefore the iterative scheme will converge to an
“al-No” configuration in just one step.

B. Consensus schemes

In Vicsek’s model for leaderless coordination [12] [17], at
each time instant each agent’s state variable is updated using
a loca rule based on the average of its own state variable
plus the state variables of its neighbors at that time. The local
neighborhoods are time dependent. Each agent’s dynamic
can be represented as:

1

Gi(t+1) =< 6i(t) >= ———16i(t) + 0;(t 1
T+ =< 80 >= TgEleo+ 3 o0 ®
Here Ni(t) denotes the set of neighbors of agent i at time't
and nj(t) denotes the cardinality of this set. The dynamics
of the system can be written in matrix form. Let G, be the
set of possible graphs on n vertices. Let P be a suitably
defined set that indexes the set G,. For each G € Gy define

a corresponding F-matrix as:

Fo=(1+Dp) *(Ap+1) @

where A, is the adjacency matrix of the graph Gy and Dy is
the diagonal matrix whose ith diagonal element is the degree
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Fig. 2. Two “No-voters’ are enough to control the local majority polls.

of vertex i. The F matrices are a class of stochastic matrices
and convergence of consensus protocols depends on proper-
ties of their infinite products. In this way linear consensus
schemes are closely related to Markov chains and random
walks on graphs with self loops. Different connectivity
assumptions (symmetric vs. asymmetric neighborhoods) as
well as different topology assumptions (fixed vs. changing)
result in different sufficient conditions for convergence of
consensus problems which can be found in [12], [7], [2]
and references therein. Consider the fixed topology case.
Vicsek’'s model in this case is related to a random walk on a
fixed graph with self loops. If the graph is connected, then
limy—.. F§ =17, where " Fy = n". Therefore, all the agents
state variable will converge to x.. = Y ; mixi(0). It can be
easily verified that m; = gi—ﬁ where | equals the number of
edges in the graph. Therefore each agent’s contribution to
the consensus is proportional to the number of neighbors
it has. Therefore, for example in Figure 1, the ratio of the
contribution of white agents to the contribution of black
agents is of order O(n).

C. Robustness

In order to be functional, distributed algorithms need to be
robust to agent and link failures. In [8], Gupta et al. address
the problem of formulation of robustness in distributed
algorithms using a cost function approach. [8] defines three
failure modes: Mode 1 in which agents cease functioning and
communication, Mode 2 in which agents propagate constant
arbitrary values, and Mode 3 in which agents propagate
varying arbitrary values. It is shown that consensus problems,
for example, are robust to | — 1 node failures of Mode 1, in



an |—connected graph. A classic theorem in graph theory
states that the minimum number of vertices separating two
independent sets of nodes is equal to the maximum number
of digoint paths between them [5]. This implies that well-
connectedness will improve the robustness of distributed
algorithms.

D. Fast convergence

A very important issue in distributed agorithms is the
speed of convergence. In this section we consider discrete
time consensus problems arising from Vicsek’s model. The
faster the consensus reached, the better the performance
of the protocol. Since the applications that use consensus
protocols involve many agents, it is necessary for al of
them to converge quickly. The convergence rate is a function
of the topology of the underlying graphs. This problem is
actualy closely connected to the asymptotic behavior of
Markov chains. In fact if we consider a fixed topology, the
convergence rate of the consensus protocol is nothing but the
convergence rate to the stationary distribution of the Markov
chain corresponding to the stochastic matrix F. Consider the
system:

0(t+1) = For)0(t) ®)

as before where Fp = (I + Dp) 1A, are stochastic matrices
with nonzero diagonal elements. In the case of afixed graph
topology, the second largest eigenvalue modulus (SLEM)
of the corresponding F matrix determines the convergence
speed. This is because,

6(=) —6(t) = (F* ~F")6(0) 4)

Since F is a primitive stochastic matrix, according to the
Perron-Frobenius theorem [16], A1 =1 is a simple eigen-
value with a right eigenvector 1 and a left eigenvector
such that 1"z =1, F* = 17" and if A2,A3,..., A, are the
other eigenvalues of F ordered in a way such that A; = 1>
[A2] > |As] > ... > |Ar], and my is the algebraic multiplicity
of Ay, then

FU= F= 40" |2o') = 1x" +0(t™ |A]')  (5)

where O(f(t)) represents a function of t such that there
exists a,fB € R, with 0 < a < B < o, such that af(t) <
O(f(t)) < Bf(t) for al t sufficiently large. This shows that
the convergence of the consensus protocol is geometric, with
relative speed equal to SLEM. We denote u =1—SLEM(G)
as the spectral gap of a graph, so graphs with higher spectral
gaps converge more quickly. If the matrix F is symmetric,
its SLEM can be written as the norm of its restriction to
the subspace orthogonal to 1 [19]. However, the F matrices
are not symmetric in general. In fact although the underlying
graph structure is symmetrical, the weights that each node
applies to another node are determined by its own degree. In
general the SLEM of F matrices are not easily computable.
The ergodic coefficient [16], [3] is defined by:

71(F) = maXyew, | ||, =1/ X F | (6)

in which W is the orthogonal subspace to 1.

This means that the matrix F contracts the subspace W
by at least 71(F) at each iteration. If we denote the ith row
of F by fj, the ergodic coefficient can be written as:

u(F) = gmasisi i~ )
Also for any two stochastic matrices F; and F, 71(F1F) <
u(F)n(R). [9

The ergodic coefficient provides a tractable upper bound
for the SLEM and if the F matrices are ergodic, it provides a
computable geometric rate to steady state in many cases. For
¥ afinite set of nx n stochastic matrices, 71(X) is defined
as maxgex (F).

For the general case where topology changes are also in-
cluded, Blondel et al [2] showed that the joint spectral radius
of a set of matrices derived from F matrices determines the
convergence speed. For ¥ afinite set of n x n matrices, their
joint spectral radius is defined as:

= limsu max  ||A...Aql|t 8
p It_,.x,p Ay Ate):Ht dl ®)

Calculation of the joint spectral radius of a set of matrices
is a mathematically hard problem and is not tractable for
large sets of matrices. Using ergodic coefficients of blocks
of matrices as in [9] can provide us with geometric rates.
However, it is worthwhile to notice that graphs with well-
connected nodes guarantee fast convergence. This is a direct
result of the Cheeger inequality which relates the spectral
gap of an F matrix to the conductance of the corresponding
graph [3]. Switching over such topologies will also result
in good convergence speed.

Since agents usually have energy constraints, the number
of agents with which they communicate is limited. Therefore
an important design issue is to find topologies which satisfy
certain performance provided that the number of the links
each agent can establish is less than an upper bound. In the
next section we study the small world topologies and show
their advantages from a perspective of favorable trade off
between cost of communication versus speed of convergence.

I1l. CONVERGENCE IN “SMALL WORLD” GRAPHS

Watts and Strogatz [18] introduced and studied a simple
tunable model that can explain behavior of many real world
complex networks. Their “small world” model takes aregular
lattice and replaces the original edges by random *“shortcut”
ones with some probability 0 < ¢ < 1. It is conjectured that
dynamical systems coupled in this way would display en-
hanced signal propagation and global coordination, compared
to regular lattices of the same size. The intuition is that the
short paths between distant parts of the network cause high
speed spreading of information which may result in fast
globa coordination. Olfati-Saber [15] studied continuous
time consensus protocols on small world networks and pro-
posed some conjectures. In this study, we use a variant of the
Newman-Moore-Watts [13] improved form of the ¢ —model
originally proposed by Watts and Strogatz. The model starts
with aring of n nodes, each connected by undirected nodes
to its nearest neighbors to arange k. Shortcut links are added
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Fig. 3. Spectral gap gain for (n,k) = (500, 3)
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Fig. 4. Spectra gap gain for (n,k) = (1000,5)

-rather than rewired- between randomly selected pairs of
nodes, with probability ¢ per link on the underlying lattice;
thus there are typically nk¢ shortcuts. Here we actualy force
the number of shortcutsto be equal to nk¢ (comparable to the
Watts ¢ —model.) This reflects the limitation on the resources
of networks. In our study, we have considered different initial
rings (n,k) = (100, 2), (200, 3), (500, 3), (1000,5), generated
20 samples of small world graphs G(¢) for 50 different
¢ values chosen in a logarithmic scale between 0.01 and
1. Picking these choices of (n,k) is done for comparison
purposes with the results of [15]. In the figures 3 and 4,
we have depicted the gain in spectral gap of the resulting
small world graphs with respect to the spectral gap of the
base lattice. We just illustrate the results of cases (500, 3)
and (1000,5). The others follow a similar pattern. Some
important observations and comments follow:

1) Inthelow rangeof ¢ (0 < ¢ < 0.01) thereisno spectral
gap gain observed and the SLEM is amost constant
and a drastic increase in the spectral gap is observed
around ¢ =0.1.

2) Simulations show that “small world graphs’ possess
good convergence properties as far as consensus pro-
tocols are concerned.

The results show that adding nk¢ shortcuts to a 1—d
lattice dramatically improves the convergence properties of

consensus schemes for ¢ ~ 0.1. This is a trade off between
the performance of collaborative behavior versus the cost
of collaboration. For example in a (500, 3) lattice, by adding
randomly 150 edges, we can on average increase the spectral
gap approximately by a factor of 100.

Our aim is both to understand how this has happened and
find a more clever way of adding edges so that after adding
150 edges to a (500, 3) lattice we get much larger increase
of the spectral gap.

To formulate this problem, we consider a dynamic graph
which evolvesin time starting from a 1-d lattice Go = C(n, k).
Let’s denote the complete graph on n vertices by K. Also,
denote the complement of a graph G = (V,E) -which is the
graph with the same vertex set but whose edge set consists of
the edges not present in G - by G. So, E(G) =E(Kq) \E(G).

If we denote the operation of adding an edge to a graph
by A, the dynamic graph evolution can be written as:

G(t+1) =A(G(t),ut)) t=0,1,2,....nk¢ —1
u(t) =e(t+1) e(t+1) € E(G(t)) )
G(0) = Go

So, now the problem to solve is:

MiNg(1) . e(n)eE(G(0))....E(G(n—1)) MaX [A2(F (nk¢)), —An (F (nke))]

subject to: (9)

(10)
where F(nk¢) = D(G(nk¢))~*A(G(nk¢)). We will now
mention some observations which are useful to build a
framework for studying the above problem.

A. Spectral analysis

The choice of Go =C(n,k) to be aregular 1-d lattice with
self loops means that (possibly after re-labeling vertices) the
adjacency matrix of the graph can be written as a circulant
matrix:

al da az . . . an
an a; ap an-1
an-1 an a1 an—2
A= =circ[ay,ay, ...an]
ar as . R al
(11)
in which:
a=[a,ag,...an]=1[1,..,1 0,..,0, 1..1]
k+1 n—-2k-1 k

Circulant matrices have a specia structure which provides
them with special properties. All entries in a given diagonal
are the same. Each row is determined by its previous row by a
shift to the right (modulo n). Consider the n x n permutation
matrix, IT=circl0 1 0 0]. Then for any circulant
matrix we can write:

A = circ[ag,ay,...,an] = agl +apll + ... +a,l1""L. For a
vector a = [az,ay, ...,an), the polynomia pa(z) =a1+axz+
agz?+...am2" is called the representer of the circulant. The
following theorem based on [4] states how to calculate the
eigenvalues of circulants.



Theorem 1: [4] Let w=e’ 2=l
The elgenvalues of A = circ[as,ay, ...
pa(@'~1), wherei=1,2,...n.

The main result considering the spectral properties of Gg
follows.

Proposition 1: The corresponding F matrix of Gg =

C(n,k) is circulant. Furthermore, its SLEM has multiplicity
a least 2.
Sketch of Proof: Since Gp = C(n,k) is 2k 4 1-regular (in-
cluding the self loop), F = DA = 1A So F is circulant
F= C|rc(2k 1 a), where a is as in (12). The representer of
this ci rculant is

* be the nth root of unity.
,an] are given by A; =

k n—k n—k+1 n—1

Pa(z) = 2|(+1(1+z+ S S N A +..+2"77)
_ (13)

So, the eigenviues of this matrix are Aj = pa(®'™?). It is easy

to show that A1 = 1 and moreover it is a simple eigenvalue
because the underlying graph is connected. Since for integers
A and B, 0B = @B, it follows that A, = Ay, Az = A1
and so on. In the case that n is odd apart from A; = 1, all
eigenvalues come in pairs. In the case that n is even, it can
be shown that A%H is the only eigenvalue apart from —1
which can be singLe, however direct calculation shows that
it is equa to % which is clearly less than A, = Ay, A
simple geometric argument shows that SLEM = A, = A, =
511+ 2Re(w) + 2Re(20) + ...+ 2Re(kw)] < 1 and ;i < A2
forie2,...,n—1. This shows that for the case where k < n,
which are the cases we are more interested in, asn — o two
of the non-unity eigenvalues approach 1. This describes the
dow convergence of consensus protocols when diameter is
large.

B. A “mean field”” explanation for fast convergence in Small
World networks

Our simulation results show that adding a small number
of well chosen links to a ring-structured graph should result
in high convergence rate. However analytical verification of
this result is difficult due to the non-symmetric structure of
F matrices. Here we try to justify our result using a “mean
field” approach and perturbation analysis. In the ¢ model of
small world and its variants, a regular lattice is considered
and m shortcuts are added randomly where m is equal to a
proportion ¢ of the lattice’s initial edges. In this analysis,
following [10] we reflect the effect of shortcuts by adding
“small " nonzero positive numbers for the entries of the F
which correspond to non-adjacent nodes of the lattice. Since
the Small World model is a probabilistic model, this will
take care of the small probability of a shortcut between
any two nonadjacent nodes. Although by adding uniform
perturbations the topology of the graph is not respected,
we anticipate that the analysis gives insight on random
communication patterns for small world networks. We state
the result for the case where the base lattice is a ring but the
result can be extended to C(n,k) for other ks.

We follow the perturbation approach to small world
networks proposed by Higham [10]. Consider the base
lattice to have a ring topology on n nodes, G(n,2) and the

corresponding F matrix Fy. This can be aso viewed as a
random walk with self loops. This is similar to a particular
case of our base circulant matrix Fy. Therefore the base
matrix is:

0

O WiFWIF
O Owlk

(14

¢ WlPWIFWIE
- W O
wi- O

3 00 .. 3 3

We know that:

Corollary 1: SLEM(Fo) = 3[1+ 2cos(2%)]. Furthermore
it has multiplicity at least 2.

Now we perturbs the nonzero entries of the matrix Fy by
e =1 for fixed K> 0 and o > 1 in the limit N — oo, to get

the perturbed matrix Fe:

1 (=3¢ 1 (n-3)¢ e e
3 3 3 3
1 (-3¢ 1 (-3 1 (n—3)
3773 373 373 €
1 (=3 1 (-3¢ 1 n—3)e
Fe = € 373 3773 3773 (15)
%fm?k € € €
1_ (=3

€ 3

€ €

€ €

1_ (n-3)e
3 3 3 3

We call the “shortcuts’ created this way e—shortcuts. F; is
also a circulant matrix. The representer of this circulant is

1 (n-3¢e 1 (n-3e

1 (.nfs)s 1

Pa(t) =3 -3 +(3-——5 )+ (16)
822+sz3+...+sz”‘2+(%—%)z”‘l
So, the eigenvalues of this matrix are Ai(g) = pa(@'~1).

For this matrix the largest eigenvalue is 1. Using a similar
argument the SLEM can be calculated to be equal to:

Dale) = (% 261+ 20052—)

Thus we can state the following proposition:

Proposition 2: Let e = X% , o > 1.

« For a > 3, the effect of e-shortcuts on convergence rate
is negligible. o = 3 is the onset of the effectiveness of
shortcuts.

o For a = 2, the shortcuts are dominantly decreasing
SLEM.

« For =1, amost al of the nodes communicate effec-
tively and thus the SLEM is very small.

17

Proof:
For large n we can write:
1 2 2t ne 2n 2r
Aa(Fe) = 34—30 w3 3%,



09998
09998
09998
09998

b3

& 09998,

@

09998
09998
09998

0,999

I . . . . . . I .
0 100 20 300 400 500 600 700 80 900 1000
Vertex # o which v1 is connected (1000,10)

Fig. 5. Adding a shortcut (1000,5). The dotted line tangent to curve shows
SLEM before adding edge

472 1 4An2e 1

The first three terms are the contributions of the base
lattice and the rest are the contributions of the perturbation.
Comparing this to the SLEM of the base lattice

42 1

1 2r
AZ(FO) = 5(1—5—20087) =1- W +0($

yields the following results.

For the base lattice, the spectral gap decreases as fast as
n?. If £ is o(n%), o > 3, then terms coming from the lattice
are dominant, and therefore the shortcuts do not affect the
spectral gap. For o = 3 the terms regarding the shortcuts
will be of the same degree as the terms from the base and
for k large enough, the SLEM starts decreasing from the
corresponding lattice SLEM. For o = 2 the terms regarding
the shortcuts are dominant and the SLEM is considerably
decreased compared to the base lattice. Only for the case of
o = 1 the spectral gap does not vanish as h — co.

As observed above e—shortcuts are loosely analogous to
the shortcuts in the ¢-model.

) (19

C. Simulation results

We ran a set of simulations with different objectives based
on (9). A counter intuitive result is that the SLEM does not
monotonically change with addition of edges. Specificaly,
in cases when n is even, adding an edge will increase SLEM
except for the case where a vertex is connected to the farthest
vertex from it, that is i is connected to i+n/2 (modulo
2). In this case one of the multiplicities of the SLEM is
lessened but the other multiplicity is not changed. Figures
5 and 6 illustrate this effect. The dotted line tangent to the
curves show the SLEM of the original curves. The more
distant the two joined vertices, the less increase in SLEM.
Adding two shortcuts can however decrease the SLEM. It
is worthwhile to mention that in al of our simulations, for
a given n, shortcuts that reduced the diameter of the graph
more, resulted in higher spectral gap. For example, for the
case of adding 2 shortcuts to Go = C(16,2), Figure 6 shows

Fig. 6. The optimal topology; adding 2 shortcuts to C(16,2)

the optimal topology. The analysis of this conjecture is the
subject of future work.

IV. HIERARCHICAL SCHEME

In this section we show that a very efficient communica
tion pattern with substantial improvement in performance is
possible by a two level hierarchical scheme. The idea here
is that selecting a few well connected and controlled agents
which are well protected should enhance the speed of con-
vergence of distributed schemes like consensus agorithms.

Given n agents, suppose we can divide them into O(,/n)
groups each having O(,/n) members. For each group sup-
pose that we can select a “leader”. The leaders should be
able to have two properties, they should be well connected
to the members of their group, and they should also be able
to communicate with other leaders when necessary. If the
distributed algorithm is carried out at each group separately
and the leaders communicate on a higher level, the agents
can enjoy faster convergence rates; the reduction of the size
of each group from n to /n results in faster intergroup
convergence whereas the ease of communication between
the leaders upon demand results in overall fast convergence.

Weiillustrate this by an example. Consider the agents of the
graph in Figure 2 performing consensus algorithm. Suppose
the agents previously known as “no-voters’ are picked as
leaders and the rest of the agents as regular agents. There are
/N groups of agents. Each group has two leaders. We usually
select one leader for each group but selecting more leadersis
allowable. The leaders of groups may communicate at some
point on the clique, so if the consensus is reached inside a
group, as soon as the leaders communicate, the consensus
will be reached among all groups. The degree of leaders is
O(4/n), the degree of the regular nodes is a small number
(here 3) and the average degree of al of the agents is aso
a small number. So, the communication is very efficient.
Similarly we can consider topologies in which the leader
has lesss/more intra-group connectivity and more/less inter
-group connectivity.

The class of examples mentioned above assume perfect
information about al the agents in the network. We now
provide a semi-distributed method which can categorize the



agents as “leader” or “regular”. Furthermore, the method
assigns each regular agent with an influence vector which
indicates which leader has more influence on it. This pro-
vides the nodes with some global picture of the network.

A. Distributed exploration of the graph structure

As shown in the previous sections, the structure of a graph
playsacrucial role in the properties of a distributed algorithm
that is running on it. Given a graph topology, individual
nodes have only local knowledge about the graph structure,
which includes information about their neighboring nodes. If
any node wants to either improve its own performance - as
in the local voting scheme- or a global performance measure
-such as robustness- it needs to have more information about
the global picture of the network. This information can be
used by the node to refine its choice of neighbors in order
to improve its performance.

The most complete measure of globa graph structure is
the adjacency matrix. Since each node has limited memory,
energy, and computational capacity, they cannot store and
process the adjacency matrix. Our goal is to devise a scheme
to provide each node with a small vector that satisfies the
following criteria

1) Includes compact global information on how the node

is located with respect to the other nodes.

2) It can be disseminated in a distributed manner achiev-

able and requires minimal centralized action.

We propose a two stage algorithm for this purpose. Apart
from a single data transmission and reception to a central
authority by each node, the algorithm is carried out in a
decentralized manner. In the first stage nodes will collaborate
to find their social degree [1]. Thisisalocal measure of how
well connected a node is. Once the nodes find out their social
degree, they will transmit it to a central authority which
determines k “social leaders’ of the graph, which are the
nodes who are better connected than the rest. The central
authority then broadcasts the list of k social leaders to al of
the nodes. In the second stage of the agorithm, each node
uses a simple iterative scheme to maintain a vector of size
k which determines the influence of each social leader on it.
We call this vector the influence vector associated to each
node. In this section we define the proper concepts and give
precise description of the algorithm.

B. Social degrees and leader nodes

To find the leaders or the agents with the highest influence
we adopt a framework proposed by Blondel et a. [1] and
use a slight generalization of their model to find the leader
nodes. In [1] the authors define the social degree of a node
as the number of the cycles of length 3 passing through that
node. They aso define a node to be a socia |eader provided
that its social degree is greater or equal to its neighbors. Here
we give a generalization of these definitions.

Definition 1: social degree: The number of the neighbors
of anode is defined to be its Social degree of order 2. Socia
degree of order k (k > 2) is defined to be the number of

cycles of length k passing through a node. The social degree
of order k of node v; is denoted by SD®(v;).

Definition 2: leader nodes: A nodeis caled aleader node
of order k if its social degree of order k is greater than or
equal to that of its neighbors.

Notice that each node can determine its socia degree of
orders 2 and 3 by a simple query from its neighbors. Since
determining higher order degree requires more effort, we use
the orders 2 and 3 for our present application.

In the first stage of the algorithm, each node computes
its social degree of order 2 and 3. It also queries the social
degrees of its neighbors. Upon comparing its social degrees
with its neighbors, if a node is found to be a leader of
order 2 or 3, it transmits its degrees to the central authority.
Upon receiving these data from the leader nodes, the central
authority selects M nodes with the highest social degree in
the following manner and gives an arbitrary order to them.

For given o >0 and f =1— o and for all leader nodes |;,
i=12,...,K<N, the central authority computes the leaders
social scores as SC(I;) = aSD®@ (1;) + BSDA)(I;). Notice that
the choice of o and  determines the preference between
leaders in “star-like” neighborhood versus leaders of better
connected neighborhoods. The central authority then selects
the M leaders with the highest scores and give an arbitrary
order to them and transmits their assigned order to them.

Once a selected leader is assigned its order 1 <i < M it
will maintain the constant vector ej € RM. This is the unit
vector with 1 in its ith entry.

C. Determination of the influence vector

Our objective in this part is to associate with each of the
regular nodes a vector that determines how well it is related
to each of the leaders and how it is influenced by them. The
amount of influence that a leader has on a loca node is not
only determined by their distance but also by the number of
paths between them. We provide a definition for the influence
vector based on the properties of random walks on graphs.

Definition 3: Consider a graph with M leaders and n—M
regular nodes. Consider a random walk on this graph starting
from an arbitrary regular node i. The influence of leader node
Ik (k=1,...,M) on any regular node i is the probability that
a random walk that starts from i hits Ix before it hits any
other leader node.

Given the leaders and their ordering, here we first describe
the algorithm to determine the influence vector. Then we will
show why it converges and why the algorithm outputs valid
vectors as influence vectors.

We denote the influence vector of node i by xj € RM. By
xk(t) we mean the kth entry of the influence vector of node
i evaluated at time t.

1) Algorithm: The influence vector of leader I; is first
assigned to be the unit vector xj = ¢j. These M vectors do
not vary. For al regular nodes i, x; is initialized randomly
distributed uniformly on [0,1]M. At each iteration time t 4 1
the leaders do not change their influence vectors, whereas
each regular node updates its influence vector entry-wise



using the following rule.

x}<<t+1)1+1ni(t)[xik(t)+ Y ()]

jeNi(t)

(20)

Fork=12...n—M+1

The following theorem shows the convergence properties
of the above scheme.

Theorem 2: If the underlying graph is connected, the iter-
ation (20) converges to a set of unique vectors. Furthermore,
Iime,x}< (t) is equal to the probability that a random walk
starting at node i hits the leader node I before any other
leader node.

Proof: The proof of convergence is similar to the proof in
[11]. The particular form of the solution arises because the
procedure solves a discrete version of the Dirichlet problem
on the graph. We follow the proof of Bremaud [3]. Relabel
the nodes, such that D={1,2,...n-M} denote the regular nodes
and dD ={n—M+1,....,n} denote the leader nodes, where
li=N—-m+i. For al k=1y,...,ly, define a function ¢' on
the graph such that ¢%(1;) = 5(k, j), where § is Dirac’s Delta
function.

Let P = (I14+D)~%(A+D), where A is the adjacency matrix
of the graph G, and D is the diagonal matrix with i'th
diagonal element equal to the degree of node i (number of its
neighbors). xE‘ convergesto avalue that satisfies the following
equation

x=(Px%)i i=12..n—M

XK =¢X(i) i=n-M+1,..,n

Note that P is a stochastic matrix and the equation is valid
for the first Nr components of x. Let {ZK}n~o be a homoge-

neous Markov chain with state space V = {1,2,...,M}. Let
T be the hitting time of dD. For each state i € V define:

he = E[9(Z¥)|z§ = i] (22)

(21)

Since the underlying graph G is connected, P is irre-
ducible. Also Vi € V, pjj > 0, which means the chain is
aperiodic. The number of states is finite and therefore the
chain is positive recurrent and P(T < o|Z§ = i) = 1.

By definition hk = ¢¥ on 9D and x* = ¢¥ on D. By first
step analysis:

h¥ = ¥jev pijh on D. So:

hk—{ Px* on D

X on oD (23)

Therefore h = x on the graph G. The proof of uniqueness
of the solutions also follows from [3]. Notice that q)ik is
defined so that h}‘ is equal to the probability of hitting the
leader node I, before the other leader nodes.

V. CONCLUSIONS

We showed in different contexts that the performance of
distributed collaborative schemes can depend dramatically
on the structure of the underlying topology. We showed
that small world topologies offer several advantages from a
perspective of a favorable tradeoff between performance of

collaborative behaviors vs costs of collaborative behaviors.
A two level hierarchy consisting of carefully located and
controlled ‘leaders at the higher level and the rest of the
agents at the lower level, was shown to provide a very ef-
ficient communication pattern with substantial improvement
of performance. A semi-distributed method of finding proper
“leader” nodes and measuring the influence of them on the
regular ones in large networks was proposed.
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