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Abstract— In networked control systems, because of limits
on communication rates, control waveforms are frequently
piece-wise constant with limits on rates at which they
can switch levels. It is, therefore, natural to expect event-
triggered control switchings to perform more efficiently than
time-triggered ones. This article verifies the validity of this
supposition. A method for designing good level-triggered
control schemes is obtained by reducing the continuous
time problem to one in discrete time. Then, by numerical
procedures, the performance of the level-triggered scheme
is computed for comparison with that of the periodically
switched control scheme.

I. EVENT-TRIGGERED CONTROL FOR NETWORKED
SYSTEMS

Event-triggered controls have been shown in some
settings to be more efficient than time-triggered ones.
The paper [1] treats a problem of minimum variance
stabilization of a scalar linear plant using state-resetting
impulse controls. It provides a comparison of periodic
impulse control and impulse control triggered by ∆-
excursions of the state from the origin. By explicit calcu-
lations, it is shown [1] that for the same average rate of
impulse invocation, the level-triggered scheme provides
lower average stabilization error.

This article provides a similar comparison when the
control is not of impulse type, but is piecewise continuous.
In fact the class of control signals considered is piecewise
constant, these being natural candidates for situations in
Networked Control. There, the control signals can change
values no more than a prescribed average number of
times. The control task is to obtain good stabilization
performance while not exceeding the limits on average
switching rates. The analysis and design of these setups
is more involved than that of impulse control. So, we
are only able to provide a comparison by numerical
computations.

We show that level-triggered control switching schemes
are superior to periodically switched control schemes. We
furnish an important step, which is needed in order to be
able to design good level-triggered schemes. This con-
cerns a reduction of the continuous time event-triggered
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control problem to an equivalent control problem for a
discrete time Markov chain. While this is analogous to
the development for periodic switching of control signals,
the resulting discrete-time average cost control problem
does not have an explicitly computable solution. This is
why, the performance comparison has to be computed
numerically.

In the following section, we discuss how, in a basic Net-
worked Control setting, by assuming reliable and delay-
free delivery of data packets, event-triggered sampling
of state observations leads to an event-triggered control
problem.

II. AVERAGE COST CONTROL PROBLEM

Consider a single sensor configuration depicted in
Figure 1.

Linear Plant

xt

Piece-wise constant
Control signal

ut

ut =
∑∞

n=0 Un (xτn) · 1{τn<t≤τn+1}

SupervisorIdeal Noiseless Sensor

Fig. 1. Sample and hold control

We have a scalar state signal which is a controlled
linear system. On an infinite horizon, the sensor sends
samples to the supervisor which issues a piece-wise
constant control signal. The values of the control signal
are allowed to change only at times when the supervisor
receives samples. The control objective is to minimize the
average power of the state signal. The sensor’s objective
is to aid in the control task and send samples as often
as it can while also respecting a bound on the average
sampling rate.

The state signal obeys:

dxt = axtdt + dWt + utdt, x(0) = x0, (1)

where Wt is a standard Brownian motion process and
the control signal is piecewise constant and adapted to
the sampled stream. Let T be the sequence of sampling
times:

T = {τ0, τ1, τ2, . . .} ,
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with

τ0 = 0,
τi < τi+1 a.s. for i ≥ 0, and
τi is measurable w.r.t. Fx

t .

Then the (stationary feedback) control policy U should be
adapted to the sample sequence. Define the process {Ψt}
describing information available at the controller from the
last received data packet:

Ψt =
(

χt

νt

)
=
(∑∞

n=0 1{τn<t≤τn+1} · xτn∑∞
n=0 1{τn<t≤τn+1} · τn

)
.

Let U stand for the set of control policies U that
are adapted to the Ψ-process. The actual control signal
generated by U is given by:

ut =
∞∑

n=0

1{τn<t≤τn+1} · Un(xτn
),

where Un(xτn
) is the value of the control signal after the

sample at time τn has been received.
Stabilization performance is measured through the av-

erage power of the state signal:

Ju = lim sup
T→∞

1
T

E

[∫ T

0

x2
sds

]
, (2)

while the average sampling rate:

R = lim sup
T→∞

1
T

E

[∫ T

0

∞∑
n=0

1{τn≤T}δ (s− τn) ds

]
(3)

is kept less than or equal to a desired bound. Here, δ(·)
is the Dirac-delta function.

Since we use stationary feedback controls, the sampled
stream forms a controlled Markov chain in discrete-time.
We will translate the continuous-time optimal control
problem into an equivalent one in discrete time for which
we seek solutions. In section III, we do this for the case
of periodic sampling.

This problem differs in its information pattern from
similar ones addressed in the Stochastic Control literature.
The works [2]–[4] seek combined control and stopping
policies with both of these adapted to the same signal
process. In our problem on the other hand, the stopping
policy is allowed to depend on the x-signal process while
the control signal is adapted to the sampled sequence. The
work of [5] discusses the LQG control performance under
Poisson sampling. A deterministic version of control for
event-triggered sampling is presented in [6]. A sensor
scheduling problem related to our problem of sampling
and control is treated in [7]. There, it is shown that sensor
selection triggered by level crossings of an error process
is optimal.

The problem of choosing jointly the event-triggered
sampling matching control is a switching control problem
with no known solution. Hence in this work, we will
seek optimal control policies corresponding to a chosen
sampling strategy. We will study the performance of the
optimal controls corresponding to two types of level-
triggered sampling strategies described in section V.

III. OPTIMAL CONTROL UNDER PERIODIC SAMPLING

Under periodic sampling, the sample times are given
by

τn = n∆ for n ≥ 0.

The sampled state takes the form of a discrete time linear
system:

Xn+1 = eaT Xn +
∫ (n+1)∆

n∆

ea((n+1)∆−s)dWs

+
∫ (n+1)∆

n∆

ea((n+1)∆−s)usds (4)

= eaT Xn +

√
µ2 − 1

2a
Vn +

µ− 1
a

Un, (5)

where {Vn} is an IID sequence of standard Gaussian
random variables and µ = ea∆.

It is easy to find feedback control policies {Un} that
stabilize (in the mean square sense) the sampled linear
system. For example, linear feedback controls of the form

Un = kXn, n ≥ 0,

with −1 < k + µ2−1
2a < 1 will stabilize {Xn}. It can

also be seen that stability of the sampled state sequence
implies stability of the original continuous time system.
We shall restrict our attention to mean-square stabilizing
control policies that also make the controlled process
(5) ergodic with a p.d.f such that the fourth moment
at steady state is finite. We will need this restriction to
translate the continuous time optimization problem into
an equivalent one in discrete time. The class of linear
feedback policies which are described above are included
in our restricted policy space. Let ρ

U
be the steady state

p.d.f. corresponding to the control policy {Un}. When
the sampled state sequence is ergodic, so is the actual
continuous time state waveform.

A. Equivalent Discrete Time Ergodic Control Problem

The expected integral cost of section II, (2), is the sum
of expected integrals over the inter-sample intervals. We
want to be able to write the expected integral costs during
such intervals as functions of the state of the chain at
the beginning (or end) of the interval instead of being
functions of the chain states at both end-points.

Because of the assumed ergodicity, we can replace the
average cost (2) with the long run average cost (ergodic
cost). Then, along the lines of lemma 3.4 of [8], we have:

Ju
a.s.= lim sup

T→∞

1
T

∫ T

0

x2
sds

= lim sup
N→∞

1
N∆

N−1∑
n=0

∫ τn+1

τn

x2
sds

= lim sup
N→∞

1
N∆

N−1∑
n=0

{∫ τn+1

τn

x2
sds− E

[∫ τn+1

τn

x2
sds
∣∣∣Xn

]}

+ lim sup
N→∞

1
N∆

N−1∑
n=0

E
[∫ τn+1

τn

x2
sds
∣∣∣Xn

]
.
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The first part of the last expression is zero according to
the Martingale stability theorem (page 105 of [9]). We
are able to use this theorem because of the finiteness of
the fourth moment of the state signal.

Let δ(·) denote the Dirac-delta function. We have:

Ju
a.s.= lim sup

N→∞

1
N∆

N−1∑
n=0

E
[∫ τn+1

τn

x2
sds
∣∣∣Xn

]

= lim sup
N→∞

1
N∆

N−1∑
n=0

∫
R

E
[∫ τn+1

τn

x2
sds

]
δ(x−Xn)dx

=
1
∆

∫
R

E

[∫ ∆

0

x2
sds
∣∣∣X0 = x

]
ρ

U
(x)dx

=
1
∆

∫
R

{
AX2

n + 2BXnUn + CU2
n

}
ρ

U
(x)dx,

where,

A =
µ2 − 1

2a
,

B =
1
a

{
µ2 − 1

2a
− µ− 1

a

}
,

C =
1
a2

{
µ2 − 1

2a
− 2

µ− 1
a

+ T

}
.

In fact, we can write:

Ju
a.s.= lim sup

N→∞

1
N∆

N−1∑
n=0

AX2
n + 2BXnUn + CU2

n

∆= GU .

The solution to this fully observed, average cost (which is
identically equivalent to ergodic cost) control problem is
well known [10]. The optimal controls are linear feedback
controls. To find the optimal feedback gain, we use the
Average Cost optimality equation:

α∗ + h(x) = inf
u∈R

{
Ax2 + 2Bux + Cu2

+ E

[
h

(
µx +

µ− 1
a

u +

√
µ2 − 1

2a
W0

)]}
. (6)

Here, α∗ is the minimum cost and a quadratic choice for
h(·) verifies the optimality of linear feedback. The optimal
control is given by:

U∗
n = − a(µ2 − 1)2 + 2a2θµ(µ− 1)

(µ− 2)2 − 1 + 2a∆ + 2aθ(µ− 1)2
Xn, (7)

where,

θ =
D

2
+

√
D

2

2

+
D

2a
,

D =
µ + 1
µ− 1

(
µ2 − 1

2a
− 2

µ− 1
a

+ ∆
)
− (µ− 1)2

2a
.

The minimum average cost is:

α∗ =
θ

∆
(µ2 − 1)2

2a
. (8)

The sampling rate is of course equal to 1
∆ .

IV. LEVEL-TRIGGERED SAMPLING

Let L be a given infinite set of levels:

L = {. . . , l−2, l−1, l0, l1, l2, . . .} , (9)

with,


li ∈ R ∀ i ∈ Z,

li < li+1 ∀ i ∈ Z,

l0 = 0.

(10)

If we want a set of levels all non-zero, we just remove
l0 from the set L. We need an infinite set in order to be
able to stabilize unstable plants.

t

l3

l2

l1

l−1

l−2

xt

l3

l2

l1

l−1

l−2

x0

Fig. 2. Level-triggered sampling and the associated Markov chain. All
levels are non-zero. The initial state does not belong to the set of levels
L. This gives rise to the only transient state ‘x0’.

The sampling times triggered by L are defined through
fresh crossings of levels:

τ = 0, (11)

τ = inf
{
τ
∣∣τ > τi, xτ ∈ L, xτ /∈ xτi

}
. (12)

We have to use fresh crossings instead of arbitrary cross-
ings to keep the sampling rate finite. The expected inter-
sample times depend on the state at the beginning of the
interval as well as the control policy. We shall assume that
the levels in L as well as the control policy are such that
the expected inter-sample times are finite and bounded
away from zero. When the plant is unstable, this means
that the levels in L go up to ∞ and −∞.

A. Equivalent Discrete-time Markov Chain

As with periodic sampling, the sequence{
Xn

∣∣n = 0, 1, 2, . . . ;Xn = xτn

}
(13)

forms a discrete-time controlled Markov chain (Figure 2).
Here, it takes values in the finite set L. As before, we will
assume that the discrete-time control sequence {Un} is
such that the resultant Markov chain is ergodic and also
stable in the following sense:

E
[
h4 (X)

]
< ∞,

where, h : L → R is defined by

h(l) = |l|. (14)

Like in section III-A, we can express the average quanti-
ties for the continuous time problem in terms of the ones
for a related discrete-time controlled Markov chain {xn}.
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The average sampling rate is given by [8]:

RL,U =
1∑

li∈L πU (li)ζ (li, U(li))
, (15)

where, ζ : L × R → R+ is the expected first exit time
defined by:

ζ (li, U(li)) = E [τ1 |τ0 = 0, x0 = li ∈ L, U0 = U(li) ] ,

and {πU (li)}∞i=−∞ is the steady state distribution for
{xn}.

The average stabilization error is given by [8]:

JL,U =

∑
li∈L πU (li)g (li, U(li))∑
li∈L πU (li)ζ (li, U(li))

, (16)

where, g : L × R → R+ is defined by:

g(l) = E
[∫ τ1

0

x2
sds
∣∣∣τ0 = 0, x0 = li ∈ L, U0 = U(li)

]
.

Both the numerator and the denominator in the last ex-
pression for the average stabilization error are dependent
on U . But the denominator is just the reciprocal of the
average sampling rate which is constrained. Define the
cost J̃L,U by:

J̃L,U =
∑
li∈L

πU (li)g (li, U(li)). (17)

Then, minimizing JL,U while respecting the constraint on
the average sampling rate is the same as minimizing

J̃L,U∑
li∈L πU (li)ζ (li, U(li))

(18)

while ensuring that

RL,U =
1∑

li∈L πU (li)ζ (li, U(li))
≤ Rdesired. (19)

It is clear from the problem setup that under optimal
U , both J̃L,U and RL,U are finite, positive and non-
zero. If Γ∗ > 0 is the minimum value of JL,U , then,
while respecting the constraint on average sampling rate
(average inter-sample interval),

J̃L,U∑
li∈L

πU (li)ζ(li,U(li))
≥ Γ∗ > 0, ∀ U ∈ U

J̃L,U∗∑
li∈L

πU∗ (li)ζ(li,U∗(li))
= Γ∗.

⇔

{
J̃L,U − Γ∗

∑
li∈L πU (li)ζ (li, U(li)) ≥ 0, ∀ U ∈ U

J̃L,U∗ − Γ∗
∑

li∈L πU∗(li)ζ (li, U∗(li)) = 0.

This means we only have to worry about minimizing J̃L,U

subject to the sampling rate constraint. This is the same
as minimizing the Lagrangian:

J̃L,U − Γ
∑
li∈L

πU (li)ζ (li, U(li)). (20)

Denote the second sum in the above Lagrangian, the
average inter-sample time, by SL,U .

We will now turn to the calculation of the transition
probability kernel of {xn}, and the average quantities
J̃L,U , SL,U . To do so, we will appeal to the results of
chapter 9 in [11]. Because the state signal is scalar, there

are only two possible transitions from any state in L. The
transition probabilities

p (l′, l, U) = P
[
Xn+1 = l′

∣∣Xn = l, Un = U(l)
]
,

∀ (l′, l, U) ∈ L × L×U , (21)

are found by solving an ODE [11]:

p (li+1, li, U) = η(li), (22)

where η(·) satisfies:

(u + ax)
dη

dx
+

1
2

d2η

dx2
= 0, (23)

with the boundary conditions:

η (li+1) = 1, η (li−1) = 0. (24)

Then we have ∀ li ∈ L:

p (l, li, U) =



∫ li
li−1

e−2us−as2ds∫ i+1
li−1

e−2ur−ar2dr
if l = li+1,∫ i+1

li
e−2us−as2ds∫ i+1

li−1
e−2ur−ar2dr

if l = li−1,

0 otherwise.

(25)

The steady-state occupation measure πU can be calculated
using the equations below. For every li ∈ L

πU (li) = πU (li−1) p (li−1, li, U)+πU (li+1) p (li+1, li, U)

The expected stabilization error starting at level li up to
the first exit time out of (li−1, li+1) is given by:

g (li, U) = η(li), (26)

where η(·) satisfies the ODE:

(u + ax)
dη

dx
+

1
2

d2η

dx2
= −x2, (27)

with the boundary conditions:

η (li+1) = 0, η (li−1) = 0. (28)

Let

q1(x) =
∫ x

0

e−az2−2uzdz, and,

q1(x) =
∫ x

0

e−az2−2uz

∫ z

0

y2eay2+2uydydz.

Then we have ∀ li ∈ L:

g (li, U) =
q1 (li) q2 (li+1)− q1 (li) q2 (li−1)− q1 (li+1) q2 (li)

q1 (li+1)− q1 (li−1)

+
q1 (li−1) q2 (li)− q1 (li+1) q2 (li+1) + q1 (li+1) q2 (li−1)

q1 (li+1)− q1 (li−1)
.

Similarly, The expected first exit time E (li, U) is given
as below. We have ∀ li ∈ L:

E (li, U) =
q1 (li) q3 (li+1)− q1 (li) q3 (li−1)− q1 (li+1) q3 (li)

q1 (li+1)− q1 (li−1)

+
q1 (li−1) q3 (li)− q1 (li+1) q3 (li+1) + q1 (li+1) q3 (li−1)

q1 (li+1)− q1 (li−1)
.

where

q3(x) =
∫ x

0

e−az2−2uz

∫ z

0

eay2+2uydydz.
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As before, this expression follows from computing the
expectation as the solution to a Dirichlet boundary value
problem:

E (li, U) = η(li), (29)

where η(·) satisfies the ODE:

(u + ax)
dη

dx
+

1
2

d2η

dx2
= −1, (30)

with the boundary conditions:

η (li+1) = 0, η (li−1) = 0. (31)

B. Existence of Optimal Controls and Their Computation

The Markov chain {Xn} has the property that, inde-
pendent of U , only a finite number of elements of L can
be reached from any member of L in one step. The per
stage cost in the average cost formulation is an unbounded
function of the state. For such situations, Borkar [12]
shows the existence of optimal (non-randomized) station-
ary policies and proves the validity of the Average Cost
optimality equations:

∀ li ∈ L, α∗ = inf
ui∈R

{
g (li, ui)− ΓE (li, ui)− vi

+ p (li+1, li, ui) vi+1 + p (li−1, li, ui) vi−1

}
(32)

We use value iteration based on the above equations to
determine the optimal controls and their performance for
fixed L. We will next consider some natural classes of
level-triggered sampling schemes.

V. COMPARISONS

We will consider two level-triggered sampling schemes.
One will be the Lattice-triggered sampling scheme. Let

Latt0 = {. . . ,−2κ,−κ, 0, κ, 2κ, . . .} . (33)

Choosing L to be be Latt0 gives a set of equi-spaced
levels. Choosing L to be

Latt1 = {. . . ,−2κ,−κ, κ, 2κ, . . .} , (34)

which does not have zero as a level leads to a variant of
the equi-spaced set.

On the other hand, choosing L to be

Log0 =
{

. . . ,− log(1 + 2κ),− log(1 + κ), 0,

log(1 + κ), log(1 + 2κ), . . .
}

(35)

gives us a logarithmic set of levels and choosing L to be

Log1 =
{

. . . ,− log(1 + 2κ),− log(1 + κ),

log(1 + κ), log(1 + 2κ), . . .
}

(36)

gives us a variant.
In Figures 3, 4, 5 and 6, we have sketched the per-

formances of level-triggered schemes with these levels as
well as the periodic sampling scheme.
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In the optimal control problems dealt so far, we could
relax the restriction to controls that render the system
ergodic with a finite steady state fourth moment. But
doing so forces us to modify the state space. The new
Markov chain to be worked with has the state:

Zn =
(

Xn

Yn

)
=
(

Xn

Xn−1

)
, ∀ n ≥ 1, S0 =

(
X0

x

)
,

where, x is any valid element of the chain’s state space
that can have X0 as a successor state. Now the ex-
pected integral running cost over the inter-sample interval
[τn−1, τn) is purely a function of Zn. However, the
computation of the parameters of the Markov chain and
the solution of the average cost control problem are more
involved.

VI. CONCLUDING REMARKS

We have solved an average cost feedback control
problem with reliable delivery of samples. We need to
find ways of obtaining the optimal set of levels for event-
triggered sampling. We need to see how the performances
of the various sampling schemes compare when the signal
is nonlinear. Extension to the case of a vector signal is
non-trivial.

On the other hand, using multiple sensors for estimating
a scalar state signal leads to a tractable analysis of level-
triggered sampling. We could sample when the local
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conditional mean for the state at a sensor freshly crosses
levels. The performance of such a sampling scheme can
be analyzed with or without mutual listening of sensor
samples. In principle, incorporating packet losses is pos-
sible but not transmission delays. This of course adds to
the computational burden.

A hybrid sampling scheme based on level-triggered
and time triggered sampling lets us stabilize unstable
plants using only a finite set. The scheme depends on
deterministic sampling when the state is beyond the last
level in the finite L. This sort of scheme is needed in
practice in order to combat unreliable delivery of packets.
However, analyzing and designing such a scheme gets
more computationally burdensome.

Extension of the level-triggered scheme to the case of
vector state signal is somewhat tricky. On the one hand,
levels could be replaced by concentric spherical shells of
the form, ∣∣~x∣∣ = li > 0.

Of course, one could use ellipsoidal shells or other non-
symmetrical and non-concentric shells. But this would
differ from a scheme which samples based on threshold
crossings of the magnitude of the estimation error signal.
The latter scheme would be optimal for the average cost
filtering problem when the state signal is scalar and linear.
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