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Abstract— We consider estimation and tracking problems in
sensor networks with constraints in the hierarchy of inference
making, on the sharing of data and inter-sensor communica-
tions. We identify as a typical representative for such problems
tracking of a process when the number and type of measure-
ments are constrained. As the simplest representative of such
problems, which still encompasses all the key issues involved,
we analyze efficient sampling schemes for tracking an Ornstein-
Uhlenbeck process. We consider sampling based on time, based
on amplitude (event-triggered sampling) and optimal sampling
(optimal stopping). We obtain the best sampling rule in each
case as the solution to a constrained optimization problem. We
compare the performances of the various sampling schemes
and show that the event-triggered sampling performs close to
optimal. Implications and extensions are discussed.

I. MOTIVATION

Estimation and tracking by sensor networks, employing var-
ious hierarchies of decision making and data sharing under
communication constraints have recently attracted increasing
interest [1], [4], [5], [2], [3], [7]. These constraints are
important in systems where it is significantly cheaper to
gather measurements than to transmit processed information
within the system. As examples, we are encouraged to pay
attention to Sensor networks, Robotic systems, etc. A generic
system can be represented as a set of nodes which exchange
information using limited resources. In many sensor net-
works, each packet transmitted by a node drains precious
battery power. In robotic systems and automobile monitoring
systems, nodes share a channel for all communication and
so, there are limits on the information transmission rates.
In these systems, depending on the task at hand, the nodes
have to use their available communication budget wisely.
This directly translates to the problem where the inference
must be made subject to constraints on the number and type
of measurements made. The simplest such problem arises
when the number and type of samples of the processes to be
estimated are constrained. This is the main problem analyzed
in this paper.

In our setting, a Sensor makes continuous observations of
a Gaussian signal process. It transmits at times it chooses,
samples of its observations to a Supervisor which uses this
stream of samples to maintain a filtered (real-time) estimate
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of the signal. We study the tracking performance of an effi-
cient sampling scheme which is event-triggered. Extensions
of such problems arise in sensor networks because of the
limited capacity of a remote sensor node to communicate to
the supervisor. For simplicity of exposition, we consider here
the signal to be the scalar Ornstein-Uhlenbeck process.

II. PRELIMINARIES

We are interested in estimating an Ornstein-Uhlenbeck
process xt inside a prescribed interval [0, T ]. If x̂t the
estimate, we measure the quality of the estimate by the
following average integral squared error

J = E

[∫ T

0

(xt − x̂t)2 dt.

]

For the process xt we have the following sde

dxt = −axtdt + dwt

where wt is a standard Wiener process and x0 is a zero mean
random variable with pdf f(x0). Positive values of a give
rise to a stable process, negative to an unstable and finally
a = 0 to the Wiener process.

The estimate x̂t relies on knowledge about xt acquired
during the time interval [0, T ]. The type of information we
are interested in, are samples obtained by sampling xt at k
time instances 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ T . If we use the
minimum mean square error estimate given by

x̂t =
{

0 t ∈ [0, τ1)
xτn

e−a(t−τn) t ∈ [τn, τn+1),

the performance measure becomes

J (τ1, . . . , τk) = E

[∫ τ1

0

x2
t dt

+
k−1∑
n=1

∫ τn+1

τn

(xt − x̂t)2 dt

+
∫ T

τk

(xt − x̂t)2 dt

]
.

(1)

The goal here is to find sampling policies that are optimal in
the sense that they solve the following optimization problem:

inf
τ1,...,τk

J (τ1, . . . , τk).

The sampling times are allowed to be random but they must
be stopping times. The reason is that we would like our
decision whether to sample or not at time t to rely only
on the observed process up to time t.



For the remainder of this paper, and in order to clarify
the concepts and computations involved, we treat the single
sample case. The multiple sample case just described will be
treated elsewhere.

III. THE SINGLE SAMPLE CASE

Let us limit ourselves to the single sample case where, for
simplicity, we drop the subscript from the unique sampling
instance τ1. In this special case the performance measure in
(1) takes the form

J (τ) = E

[∫ τ

0

x2
t +

∫ T

τ

(xt − x̂t)
2

dt

]

= E

[∫ T

0

x2
t − 2

∫ T

τ

xtx̂t dt +
∫ T

τ

(x̂t)2 dt

]
.

Now notice that the second term can be written as follows

E

[∫ T

τ

xtx̂t dt

]
= E

[∫ T

τ

E[xt|Fτ ]x̂t dt

]

= E

[∫ T

τ

(x̂t)2 dt

]
,

where we have used the strong Markov property of xt that
for t > τ we have E[xt|Fτ ] = xτe−a(t−τ) = x̂t. Because
of this observation the performance measure J (τ) takes the
form

J (τ) = E

[∫ T

0

x2
t dt −

∫ T

τ

(x̂t)2 dt

]

=
e−2aT − 1 + 2aT

4a2

+ E

[
x2

0

1 − e−2aT

2a
− x2

τ

1 − e−2a(T−τ)

2a

]

= T 2

{
e−2aT − 1 + 2aT

4(aT )2

+ E

[
x2

0

T

1 − e−2aT

2(aT )
− x2

τ

T

1 − e−2(aT )(1−τ/T )

2(aT )

]}

= T 2

{
e−2ā − 1 + 2ā

4ā2

+ E

[
x̄2

0

1 − e−2ā

2ā
− x̄2

τ̄

1 − e−2ā(1−τ̄)

2ā

]}
,

where

t̄ =
t

T
; ā = aT ; x̄t̄ =

x t
T√
T

. (2)

It is interesting to note that

dx̄t̄ = −āx̄t̄dt̄ + dwt̄.

This suggests that, without loss of generality, we can limit
ourselves to the normalized case T = 1 since the case T �= 1
can be reduced to it by using the transformations in (2). The

performance measure we are finally considering is

J (τ) =
e−2a − 1 + 2a

4a2

+ E

[
x2

0

1 − e−2a

2a
− x2

τ

1 − e−2a(1−τ)

2a

]
; τ ∈ [0, 1].

(3)

We will also need the following expression

J (τ, x0) =
e−2a − 1 + 2a

4a2
+ x2

0

1 − e−2a

2a

− E

[
x2

τ

1 − e−2a(1−τ)

2a

∣∣∣x0

]
; τ ∈ [0, 1].

(4)

Clearly, J (τ) = E[J (τ, x0)], where the last expectation is
with respect to the statistics of the initial condition x0.

Next we are going to consider three different classes of
admissible sampling strategies and we will attempt to find
the optimal within each class that minimizes the performance
measure in (3). The classes we are interested in are: a) de-
terministic sampling; b) threshold sampling and c) optimal
sampling.

A. Optimal deterministic sampling

Let us first minimize (3) over the class of deterministic
sampling times. The performance measure then takes the
form

J (τ) =
e−2a − 1 + 2a

4a2
+ σ2 1 − e−2a

2a

− 1
4a2

{
1 − (1 − 2aσ2)e−2aτ

}{
1 − e−2ae2aτ

}
; τ ∈ [0, 1]

(5)

where σ2 denotes the variance of the initial condition. Clearly
J (τ) is minimized when we maximize the last term in the
previous expression. It is a simple exercise to verify that the
optimal sampling time satisfies

τo = arg max
τ

{
1 − (1 − 2aσ2)e−2aτ

}{
1 − e−2ae2aτ

}
=

{
1
2 + log(1−2aσ2)

4a for σ2 ≤ 1−e−2a

2a ,

0 otherwise.
(6)

In other words, if the initial variance is greater than the value
(1 − e−2a)/2a then it is better to sample in the beginning.
The corresponding optimum performance becomes

J (τo) =
e−2a − 1 + 2a

4a2

− 1
4a2

(e−a −
√

1 − 2aσ2)21l{
σ2≤ 1−e−2a

2a

} .
(7)

B. Optimal threshold sampling

Here we consider a threshold η and we sample the process
xt whenever |xt| exceeds η for the first time. If we call τη

the sampling instance

τη = inf
0≤t

{t : |xt| ≥ η}.



then it is clear that we can have τη > 1. We therefore
define our sampling time as the minimum of the two, that
is, τ = min{τη, 1}. Of course sampling at time τ = 1,
has absolutely no importance since from (3) we can see that
such a sampling produces no contribution in the performance
measure. Another important detail in threshold sampling is
the fact that whenever |x0| ≥ η then we sample at the
beginning.

Our goal here is, for given parameter a and pdf f(x0)
to find the threshold η that will minimize the performance
measure J (τ). As in the previous case let us analyze J (τ).
We first need to compute J (τ, x0) for given threshold η.
From (4) we have

J (τ, x0) =
e−2a − 1 + 2a

4a2

+
{

x2
0

1 − e−2a

2a
− η2

E

[
1 − e−2a(1−τ)

2a

∣∣∣x0

]}
1l{|x0|<η}.

(8)

We first note that our expression captures the fact that we
sample in the beginning whenever |x0| ≥ η. Whenever this
does not happen, that is, on the event {|x0| < η} we apply
our threshold sampling. If |xt| reaches the threshold η before
the limit time 1, then we sample and xτ = ±η, therefore

x2
τ

1 − e−2a(1−τ)

2a
= η2 1 − e−2a(1−τ)

2a
.

If however |xt| does not reach the threshold before time 1,
then we sample at t = 1 and we have

x2
τ

1 − e−2a(1−τ)

2a

∣∣∣
τ=1

= 0 = η2 1 − e−2a(1−τ)

2a

∣∣∣
τ=1

,

Manipulating the last term in (8) we obtain

J (τ, x0) =
e−2a − 1 + 2a

4a2

− (η2 − x2
0)

[
1 − e−2a

2a

]
1l{|x0|<η}

+ η2e−2a
E

[∫ τ

0

e2at dt
∣∣∣x0

]
1l{|x0|<η}.

The only term that needs special attention in the previous
formula is the last one, for which we must find a compu-
tational recipe. Consider a function U(x, t) defined on the
orthogonal region |x| ≤ η, 0 ≤ t ≤ 1. We require U(x, t)
to satisfy the following pde and boundary conditions

1
2
Uxx − axUx + Ut + e2at = 0; U(±η, t) = U(x, 1) = 0.

(9)
If we apply standard Itô calculus on U(xt, t) we have

E[U(xτ , τ)|x0] − U(x0, 0) = E

[∫ τ

0

dU(xt, t)
∣∣∣x0

]

= E

[∫ τ

0

{
1
2
Uxx − axUx + Ut

}
dt

∣∣∣x0

]

= −E

[∫ τ

0

e2atdt
∣∣∣x0

]
.

Notice that at the time of sampling, xτ is either at the
boundary xτ = ±η in which case U(xτ , τ) = U(±η, τ) = 0,
or we have reached the limit t = 1 with |x1| < η, thus we
sample at τ = 1 which yields U(xτ , τ) = U(x1, 1) = 0. We
thus conclude that E[

∫ τ

0
e2atdt|x0] = U(x0, 0).

With the help of the function U(x0, 0) we can write
J (τ, x0) as

J (τ, x0) =
e−2a − 1 + 2a

4a2

−
{

(η2 − x2
0)

1 − e−2a

2a
+ η2e−2aU(x0, 0)

}
1l{|x0|<η}.

Averaging this over x0 yields the following performance
measure

J (τ) =
e−2a − 1 + 2a

4a2

− 1 − e−2a

2a
E

[
(η2 − x2

0)1l{|x0|<η}
]

− η2e−2a
E

[
U(x0, 0)1l{|x0|<η}

]
.

To find the optimal threshold and the corresponding optimum
performance we need to minimize J over η. This optimiza-
tion can be performed numerically as follows: for every η we
compute U(x0, 0) by solving the pde in (9); then we perform
the averaging over x0; we then compute the performance
measure for different values of η and select the one that
yields the minimum J (τ).
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Fig. 1. Relative performance of optimal (variable) threshold and suboptimal
constant threshold sampling scheme, as a function of the variance (σ2) of
the initial condition.

In order to observe certain key properties of the optimal
thresholding scheme let us consider the case a = 1 with a
zero mean Gaussian initial value x0 of variance σ2. Fig. 1(a)
depicts the optimum performance J (τ) as a function of the
variance σ2 and Fig. 2(b) the corresponding optimal thresh-
old η. From Fig. 2(b) we observe that the optimal threshold
is between two limiting values η0, η∞. The interesting point
is that both these values are independent of the actual density
function f(x0), as long as the pdf is from a unimodal family
of the form: f(x) = h(x/σ)/σ, σ ≥ 0 where, h(·) is an
unimodal pdf with unit variance and with both its mean and
mode being zero. Indeed for such a pdf, variance tending
to 0, means that the density f(x0) tends to a Dirac delta



Fig. 2. Optimal threshold as a function of the initial variance σ2, with
a = 1.

function at zero. The performance measure in (III-B) then
takes the simple form

J (τ) =
e−2a − 1 + 2a

4a2
− η2

{
1 − e−2a

2a
+ e−2aU(0, 0)

}

which, if minimized with respect to η, yields η0. If now
we let the variance σ2 → ∞ then every unimodal function
becomes almost flat with value f(0) inside each finite
interval [−η, η]. The corresponding performance measure
then takes the form

J (τ) ≈ e−2a − 1 + 2a

4a2

− f(0)
∫ η

−η

1 − e−2a

2a
(η2 − x2

0) dx0

− f(0)
∫ η

−η

η2e−2aU(x0, 0) dx0.

To optimize the previous expression it is sufficient to opti-
mize the last integral, which is independent of the actual pdf
f(x0). This optimization will yield η∞.

Threshold sampling has another interesting property. If
instead of using the optimal threshold η which is a function
of the initial pdf and the variance σ2, we use the constant
threshold ηo = 0.5(η0 + η∞), then the resulting sampling
policy is clearly suboptimal. However as we can see from
Fig. 1 the performance of the suboptimal scheme is prac-
tically indistinguishable from that of the optimal. Having a
sampling scheme which is (nearly) optimal for a large variety
of pdfs (unimodal functions) and practically any variance
value, is definitely a very desirable characteristic. We would
like to stress that this property breaks when f(x0) is not
unimodal and also when a takes upon large negative values
(i.e. the process is strongly unstable).

C. Optimal sampling

In this section we are interested in sampling strategies that
are optimal in the sense that they minimize the performance
measure (3) among all possible sampling policies (stopping
times) τ . Unlike the previous sampling scheme, the optimal
sampling rule is completely independent of the pdf f(x0).
From (3) it is clear that in order to minimize the cost J (τ)

it is sufficient to perform the following maximization

V (τ) = sup
0≤τ≤1

E

[
x2

τ

1 − e−2a(1−τ)

2a

]
. (10)

Using standard optimal stopping theory [6] let us define
the optimum cost to go (Snell envelope) as follows

Vt(x) = sup
t≤τ≤1

E

[
x2

τ

1 − e−2a(1−τ)

2a

∣∣∣xt = x

]
. (11)

If one has the function Vt(x) then it is straightforward to
find the optimal sampling policy. Unfortunately this function
is usually very difficult to obtain analytically, we therefore
resort to numerical approaches. By discretizing time with
step δ = 1/N , we define a sequence of (conditionally with
respect to x0) Gaussian random variables x1, . . . , xN , that
satisfy the AR(1) model

xn = e−aδxn−1+wn, wn ∼ N
(

0,
1 − e−2aδ

2a

)
; 1 ≤ n ≤ N.

As it is indicated, wn are i.i.d. Gaussian random variables.
Sampling in discrete time means selecting a sample xν

from the set of N + 1 sequentially available random vari-
able x0, . . . , xN , with the help of a stopping time ν ∈
{0, 1, . . . , N}. As in (11) we can define the optimum cost to
go which can be analyzed as below. For n = N,N−1, . . . , 0,

Vn(x) = sup
n≤ν≤N

E

[
x2

ν

1 − e−2aδ(N−ν)

2a

∣∣∣xn = x

]

= max
{

x2 1 − e−2aδ(N−n)

2a
, E[Vn+1(xn+1)|xn = x]

}
.

Equ. (12) provides a (backward) recurrence relation for the
computation of the cost function Vn(x). Notice that for
values of x for which the l.h.s. in (12) exceeds the r.h.s.
we stop and sample, otherwise we continue to the next time
instant. We can prove by induction that the optimal policy is
a time-varying threshold one. Specifically for every time n
there exists a threshold λn such that if |xn| ≥ λn we sample,
otherwise we go to the next time instant. The numerical
solution of the recursion presents no special difficulty. If
Vn(x) is sampled in x then this function is represented as
a vector. In the same way we can see that the conditional
expectation is reduced to a simple matrix-vector product.
Using this idea we can compute numerically the evolution
of the threshold λt with time. Fig. 3 depicts examples of
threshold time evolution for values of the parameter a =
−1, 0, 1.

Using Vn(x) the final optimum cost can be computed from
(3) as

J (τ) =
e−2a − 1 + 2a

4a2
− E

[
V0(x0) − x2

0

1 − e−2a

2a

]
.

Since from the recursion we know that V0(x0) = x2
0(1 −

e−2a)/2a for |x0| ≥ λ0, we conclude that we can also write

J (τ) =
e−2a − 1 + 2a

4a2

− E

[{
V0(x0) − x2

0

1 − e−2a

2a

}
1l{|x0|≤λ0}

]
.

(12)
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Fig. 3. Time evolution of the optimal threshold λt for parameter values
a = 1, 0,−1.

1) The Wiener case: Let us now focus on the case a = 0
which gives rise to a Wiener process. We consider this special
case because it is possible to obtain an analytic solution for
the optimization problem. For a = 0 the optimization in (10)
takes the form

V (τ) = sup
0≤τ≤1

E
[
x2

τ (1 − τ)
]
.

Consider the following function of t and x

Vt(x) = A

{
1
2
(1 − t)2 + x2(1 − t) +

x4

6

}
(13)

where A =
√

3/(1 +
√

3). Using standard Itô calculus, if xt

is a standard Wiener process, we can show that

E[Vτ (xτ )|x0] − V0(x0) = E

[∫ τ

0

dVt(xt)|x0

]
= 0 (14)

for any stopping time τ . Notice now that

Vt(x) − x2(1 − t) = A

(
x2

√
6
− 1 − t√

2

)2

≥ 0. (15)

Combining (14) and (15) we conclude that for any stopping
time τ

V0(x0) = E[Vτ (xτ )|x0] ≥ E[x2
τ (1 − τ)|x0].

This relation suggests that the performance of any stopping
time τ is upper bounded by V0(x0). Consequently if we can
find a stopping time with performance equal to this value
then it will be optimal. In fact such a stopping time exists.
From the previous relation the last inequality becomes an
equality if at the time of sampling τ we have Vτ (xτ ) =
x2

τ (1 − τ). From (15) we conclude that this can happen iff
|xτ | is such that the rhs in (15) is exactly 0 which happens
if x2

τ/
√

6 = (1 − τ)/
√

2. This suggests that the optimal
threshold for the Wiener process is the following function of
time

λt = 4
√

3
√

1 − t.

The optimal value of the performance measure, from (12)
and letting a → 0, becomes

J (τ) =
1
2
− E

[{V0(x0) − x2
0

}
1l{|x0|≤λ0}

]
,

where Vt(x) is defined in (13).

IV. COMPARISONS

We have seen that the best sampling strategy is an event-
trigerred one. Below, we will see graphically that a simpler
event-trigerred strategy based on a constant threshold, is
largely of good performance compared to the time-trigerred
one, thus providing more ammunition to the ideas of [1]
Let us now compare the performance of the three sampling
schemes (deterministic, constant thresholding and optimal)
for values of the parameter a = 10, 1, 0,−1. Regarding
threshold sampling we apply the suboptimal version which
uses a constant threshold. For the pdf of the initial value
x0 we assume zero mean Gaussian with variance σ2 rang-
ing from 10−4 to 104. Figures (4,5,6,7) depict the relative
performances of the three schemes with the graphs being
normalized so that the maximum is 1. In (a), (b) where a
is positive (stable process) the performance of the threshold
policy is very close to the optimum and the gain, compared
to deterministic sampling, is more important. When however
we go to values of a that give rise to unstable processes,
threshold sampling starts diverging from the optimal, as in
(c) and (d) and, although not shown here, when a is less
than -5 (strongly unstable process) deterministic sampling
can even perform better than threshold sampling.
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Fig. 4. Relative performance of Optimal, Threshold and Deterministic
samplers as a function of initial variance σ2 and parameter value a = 10.

Fig. 5. Relative performance of Optimal, Threshold and Deterministic
samplers as a function of initial variance σ2 and parameter value a = 1.

Fig. 6. Relative performance of Optimal, Threshold and Deterministic
samplers as a function of initial variance σ2 and parameter value a = 0.

Fig. 7. Relative performance of Optimal, Threshold and Deterministic
samplers as a function of initial variance σ2 and parameter value a = −1.


