
Multiple Sampling for Estimation on a Finite Horizon∗

Maben Rabi, George V. Moustakides, and John S. Baras

Abstract— We discuss some multiple sampling problems that
arise in finite horizon real-time estimation when there is an
upper limit on the number of allowable samples. Measuring
estimation quality by the aggregate squared error, we compare
the performances of the best deterministic, level-triggered
and the optimal sampling schemes. We restrict the signal to
be either a Wiener or an Ornstein-Uhlenbeck process. For
the Wiener process, we provide closed form expressions and
series expansions, whereas for the Ornstein Uhlenbeck process,
procedures for numerical computation. Our results indicate
that the best level-triggered sampling is almost optimal when
the signal is stable.

I. EVENT-TRIGGERED SAMPLING

In many decision and control problems, we can impose a
certainty-equivalence type separation into a signal estima-
tion part and a control or decision design part. For example,
an optimal control or a signal detection problem can be
solved by certainty-equivalence policies which treat a least-
squares estimate of the signal waveform as the true state. In
these situations, the processing of available measurements
should be geared towards obtaining the best quality signal
estimate. In Networked Control Systems [1] where the
sensors have only a limited number of packets (samples)
to transmit to the supervisor, the sampling design affects
the quality of the signal estimate.

Kushner [2] has treated a problem of picking a fixed
number of deterministic sampling times for a finite horizon
linear optimal control problem. He establishes the validity
of the separation principle and obtains closed form expres-
sions for the minimum cost in the scalar case. The collection
[3] treats some randomized as well as deterministic but
irregular sampling schemes for smoothing and control.
Cambanis and Masry [4] have treated the problem of pick-
ing the best deterministic and random sampling schedules
for hypothesis testing based on a smoothed estimate. Their
random sampling schedules are however not adapted to the
signal observed by the sensor.

For the problems treated in this paper, we seek to char-
acterize the performance gains provided by event-trigerred
sampling policies. Event-triggered sampling has been re-
ferred to as ‘Lebesgue-type’ sampling in the control litera-
ture [5]. We solve a sampling design problem within three
classes of sampling strategies with the sampling design
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tailored to a signal filtering task. The design objective is
to minimize, over a finite horizon, the distortion of a filter
(real-time estimator) of the signal based upon the stream
of samples. This minimization is performed with a fixed
constraint on the maximum number of samples used. In [6]
a related problem in discrete-time is treated.

For the signal to be estimated (the state process) xt , t ∈
[0,T ], we will assume that a sensor has perfect observation
of the state and transmits at times it chooses, current sam-
ples of the state process. The sensor is allowed to generate
at most N samples to be transmitted to a supervisor. The
sampling times S = {τ1, . . . ,τN} have to be an increasing
sequence of stopping times with respect to the x-process.
They also have to lie within the interval [0,T ]. Based on the
samples and the sampling times, the least-squares estimate
for the supervisor x̂t is given by [7]:

x̂t =

⎧⎪⎨
⎪⎩

E[xt |F0] if 0 ≤ t < τ1,

E[xt |Fτi ] if τi ≤ t < τi+1 ≤ τN ,

E[xt |FτN ] if τN ≤ t ≤ T.

(1)

The quality of this estimate is measured by the aggregate
squared error distortion:

J(S) = E

[∫ T

0
(xs − x̂s)

2ds

]

= E

[∫ τ1

0
(xs − x̂s)

2ds+
N

∑
i=2

∫ τi

τi−1

(xs − x̂s)
2ds

+
∫ T

τN

(xs − x̂s)
2ds

]
(2)

We will consider three sampling strategies and characterize
their performance. The strategies are:
Deterministic sampling: The sampling sequence S is cho-
sen apriori and hence independent of the signal trajectory.
It is chosen to minimize the expected distortion J. In this
scheme, the supervisor too knows in advance when the
sensor will generate and transmit samples.
Level-triggered sampling: The sensor chooses the sam-
pling times based on times the error signal xt − x̂t crosses
chosen thresholds. The actual sampling times are the lesser
of these threshold times and the end time T . The sampling
times are dependent on the actual sensor observations.
Optimal sampling: To choose sampling times, the sensor
solves a sequence of optimal stopping time problems and
applies the resulting stopping rule. Here too, these times are
dependent on the actual sensor observations.

Let us now start with a detail on the single sampling
instance, i.e. N = 1, since this is going to serve as a basis
for solving the general case.

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

WeIP1.10

1-4244-0171-2/06/$20.00 ©2006 IEEE. 1351



A. Single Sample case

We can express the distortion J as follows:

J(τ1) = E

[∫ τ1

0
x2

s +
∫ T

τ1

(xs − x̂s)
2 ds

]

= E

[∫ T

0
x2

s −2
∫ T

τ1

xsx̂s ds+
∫ T

τ1

(x̂s)2 ds

]
.

Now notice that the second term can be written as follows

E

[∫ T

τ1

xsx̂s ds

]
= E

[∫ T

τ1

E[xs|Fτ1 ]x̂s ds

]
= E

[∫ T

τ1

(x̂s)2 ds

]
,

where we have used the fact that x̂s is Fτ1 -measurable.
Because of this observation the performance measure J(τ1)
takes the form

J(τ1) =
∫ T

0
E
[
x2

s

]
ds−E

[∫ T

τ1

(x̂s)2 ds

]
. (3)

The above expression is valid for all stopping times τ1

satisfying 0 ≤ τ1 ≤ T . We also observe that the first term is
constant not depending on the sampling strategy. Next we
are going to focus on sampling the Wiener and the Ornstein-
Uhlenbeck process and attempt to quantify the performance
of the three sampling strategies in the case of single and
multiple samples.

II. SAMPLING THE WIENER PROCESS

Here our signal is defined with the help of the following
SDE

dxt = dWt , t ∈ [0,T ],

with x0 = 0 and Wt a standard Wiener process.

A. Single sample case

The least-squares estimate in this case takes the simple
form [7]:

x̂t = E[xt |Fτi ] = xτi ,

which when substituted in (3) yields the following single
sample performance

J(τ1) =
T 2

2
−E

[
x2

τ1
(T − τ1)

]
.

1) Optimum deterministic sampling: When τ1 is deter-
ministic, the distortion becomes:

J(τ1) =
T 2

2
− (T − τ1)E

[
x2

τ1

]
=

T 2

2
− (T − τ1)τ1, (4)

which is straightforwardly minimized for τ1 = 0.5T result-
ing in minτ1 J(τ1) = T 2

4 .

2) Optimum level-triggered sampling: For a given η ≥ 0,
let τη denote the following level-crossing time:

τη = inf
t≥0

{t : |xt | ≥ η} . (5)

The actual sampling time is given by τ1 = τη ∧T , and the
distortion by

J(τ1) =
T 2

2
−η2

E
[
(T − τη)+

]
.

We do not have a closed form expression for the pdf of
the stopping time τη . There is a series expansion provided
in page 99 of [8] which is not directly useful to our cal-
culations. Instead, we compute a version of the generating
function of τη .

Lemma 2.1: Given that x0 = 0 and the threshold η ,

E
[
e−sτη

]
=

1

cosh(η
√

2s)
= Fη(s).

Proof: Apply the Itô formula on the function h(x, t) =
e−st [1− cosh(x

√
2s)

cosh(η
√

2s)
] to obtain:

E
[
h
(
xτη ,τη

)−h(0,0)
]

= E

[∫ τη

0

{
ht(xt , t)+

1
2

hxx(xt ,t)
}

dt

]
,

= E
[
e−sτη

]−1.

Since, h(xτη ,τη ) = 0, the result holds.
We know that the pdf fη (t) of τη is the inverse Laplace

transform of Fη(s), therefore we can write

E
[
(T − τη)+

]
=
∫ T

0
(T − t) fη(t)dt,

=
∫ T

0
(T − t)

[
1

2π j

∮
Fη(s)est ds

]
dt,

=
1

2π j

∮
Fη(s)

[∫ T

0
(T − t)estdt

]
ds,

=
1

2π j

∮
esT −1− sT

s2 cosh(η
√

2s)
ds.

The last integral is on a contour which encompasses the
entire left half plane. We compute it through an application
of the residue theorem. Firstly, s = 0 is not a pole of the
integrand as it is a double zero for its numerator. The only
poles of the integrand come from zeroes of the function
cosh(η

√
2s). These are sk =−(2k + 1)2 π2

8η2 , k = 0,1,2, . . . ,

and they all lie inside the left half plane. The contour
integral we need to compute is given through a sum of
the residues at all of these poles:

E
[
(T − τη)+

]
=

1
2π j

∮
esT −1− sT

s2 cosh(η
√

2s)
ds,

=
∞

∑
k=0

eskT −1− skT

s2
k

lim
s→sk

s− sk

cosh(η
√

2s)
,

=
∞

∑
k=0

eskT −1− skT

s2
k

× (−1)(k+1) 4sk

π(2k + 1)
.
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Using the above result, the distortion can be written as:

J (τη ) =
T 2

2
ϕ(λ ),

where λ = π2T
8η2 , and

ϕ(λ ) = 1− π
λ 2

∞

∑
k=0

(−1)k e−(2k+1)2λ −1+(2k + 1)2λ
(2k + 1)3 . (6)

Because of the above relations, we can see that minimizing
the distortion J with respect to the threshold η is the same
as minimizing it with respect to λ :

inf
η

J(τη ) = inf
λ

T 2

2
ϕ(λ ).

If λ0 minimizes ϕ(·), then the optimum threshold η0 is
given by:

η0 =
π

2
√

2λ0

√
T .

Numerically evaluating λ0, we obtain η0 = 0.9391
√

T and
the corresponding minimum distortion to be 0.3952(T 2/2).
This is about a 20% improvement over the minimum
distortion of the deterministic sampling scheme: 0.5(T 2/2).

3) Optimum single sampling: We seek the sampling
strategy that minimizes the distortion. We seek a stopping
time τ1 satisfying 0 ≤ τ1 ≤ T and minimizing:

J(τ1) =
T 2

2
−E

[
x2

τ1
(T − τ1)

]
.

Only the second term depends on the stopping time τ 1.
Furthermore, relaxing the constraint τ1 ≤ T does not change
the optimum or the optimizing policy.

So, we are interested in finding a stopping time τ1 that
maximizes the following expected reward:

E
[
x2

τ1
(T − τ1)

]
.

Consider the following candidate maximum expected reward
function (the Snell envelope [9]):

g(x, t) = A

{
1
2
(T − t)2 + x2 (T − t)+

x4

6

}
,

where A is a constant to be specified subsequently. Since
xt = Wt , using Itô calculus it is straightforward to prove

dg(xt , t) = A

{
2Wt(T − t)+

2
3

W 3
t

}
dWt .

If τ is any stopping time, we have:

E [g(xτ ,τ)−g(x0,0)] = E

[∫ τ

0
dg(xt ,t)

]
= 0,

which leads us to:

E [g(xτ ,τ)|x0] = g(x0,0) = A

{
1
2

T 2 + x2
0 (T )+

x4
0

6

}
.

Let us now pick A such that g(x, t)≥ x2(T −t) but also with
equality for some family of pairs (x, t). Then we observe
that for

A =
√

3

1+
√

3

the difference:

g(x, t)− x2(T − t) = A

(
x2
√

6
− T − t√

2

)2

≥ 0,

becomes a perfect square. And we do have equality for pairs
(x, t) such that x2 =

√
3(T − t). Thus the optimal stopping

rule is given by:

τ∗1 = inf
t

{
t : x2

t ≥
√

3(T − t)
}

.

The corresponding minimum distortion is given by:

J(τ∗1 ) =
T 2

2
−

√
3

1+
√

3

T 2

2
=

1

1+
√

3

T 2

2
= 0.366

T2

2
,

which is smaller than the corresponding optimum level
triggering scheme.

B. N-Sample case

We will now use the results of section II-A to characterize
the performance of the three sampling strategies when the
allowed number of samples is more than one.

1) Deterministic sampling: We will show through in-
duction that uniform sampling on the interval [0,T ] is the
optimal deterministic choice for N samples 0 ≤ τ1 ≤ τ2,≤
·· · ≤ τN ≤ T , given that the initial value of the signal is
zero. For N samples, the distortion takes the form given in
(2) which we denote as J[0,T ](τ1,τ2, . . .τN). If we assume
that the optimal choice of N −1 deterministic samples over
[T1,T2] is the uniform one, that is

τi = T1 + i
T2 −T1

N
, i = 1,2, . . . ,N −1,

the corresponding minimum distortion becomes:

J[T1,T2](τ1, . . . ,τN−1) =
(T2 −T1)

2

2N
.

Notice now that the minimum distortion over the set of N
sampling times can be written as

min
τ1,τ2,...τN

J[0,T ] (τ1,τ2, . . .τN)

= min
τ1

{∫ τ1

0
(xs − x̂s)

2ds+ min
τ2,τ2,...τN

J[τ1,T ] (τ2, . . .τN)
}

= min
τ1

{
τ1

2

2
+

(T − τ1)
2

2N

}
=

T 2

2(N + 1)
,

the minimum being achieved for τ1 = T/(N + 1). This
proves the assertion about the optimality of uniform sam-
pling.
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2) Level triggered sampling: Here, the sampling times
are defined with the help of N thresholds η i ≥ 0, i = 1, . . . ,N
as follows

τi,ηi = inf
t≥τi−1

{
t : |xt − xτi−1 | ≥ ηi

}
,

τi = min
{

τi,ηi ,T
}

, τ0 = 0.

Based on the discussion in section(II-A.2), we can write
down the minimal distortion for the level-trigerred scheme
with a single sample over [T1,T ]. allowed. It is:

c1

[
(T −T1)

+]2

2
= 0.3952

[(T −T1)+]2

2
.

Like in the single sample case, we will show that the
expected distortion over [0,T ] given at most N samples is
of the form

cN
T 2

2
.

The minimal expected cost over [0,T ] for an optimal
stopping problem of the type (7) below g, is of the form
of the terminal cost expression in (7). Let τη be the level-
crossing time of equation (5). Then, given a positive real
number α , the following minimal cost

min
η≥0

J(η) = min
η≥0

E

[∫ τη∧T

0
x2

s ds+ α
[
(T − τη)+

]2
]

(7)

turns out to be of the form β
[
(T − τη)+

]2
, where β > 0

depends only on α .
We will now prove this useful fact. Notice that:

d
[
(T − t)x2

t

]
= −x2

t dt + 2(T − t)xtdxt +(T − t)dt,

and that,

E

[∫ τη∧T

0
x2

s ds

]

= E

[
(T − τη ∧T )x2

τη∧T +
T 2

2
− 1

2
(T − τη ∧T )2

]

=
T 2

2
−E

[
η2(T − τη)+ +

1
2

[
(T − τη)+

]2
]
.

Thus, the cost (7) becomes:

J(η) =
T 2

2

[
ϕ(λ )+

(
1
2
−α

)
ψ(λ )

]
,

where we have followed the notation of section(II-A.2) with
λ and ϕ defined in (6). Function ψ is also given as a series
expansion in the following relation

ψ(λ ) = 16
πλ 2 ∑∞

k=0(−1)k e−(2k+1)2λ−1+(2k+1)2λ−(1/2)(2k+1)4x2

(2k+1)5 .

Then we have the optimal cost (7) as:

min
η≥0

J(η) =
T 2

2
inf
λ
{ϕ(λ )+ (0.5−α)ψ(λ )}.

Based on the above discussion, we can define ck recursively
as follows: For k ≥ 2,

ck = inf
λ
{ϕ(λ )+ (0.5− ck−1)ψ(λ )} ,

λ ∗
k = arginf

λ
{ϕ(λ )+ (0.5− ck−1)ψ(λ )} ,

ρk =
π

2
√

2λ ∗
k

.

The optimal set of thresholds are given by:

η∗
k = ρN−k+1

√
T − τk−1.

3) Optimal multiple sampling: Exactly like in the previ-
ous discussion on multiple level-triggered sampling, we will
obtain a parametric expression for the minimal expected
distortion given at most N samples. Analogous to equation
(7), consider the stopping cost:

J(τ) = E

[∫ τ∧T

0
x2

s ds+
α
2

[
(T − τ)+

]2
]

(8)

where α ≥ 0 is a given constant. We can rewrite this as:

1
2

{
T 2 −E

[
2x2

τ∧T (T − τ)+ +(1−α)
[
(T − τ)+

]2
]}

.

Note that there is no change in optimality by permitting τ
to take values bigger than T . In fact the optimal τ even with
this relaxation will a.s. be less than T . Like in the single
sample case, let us pay attention to the part of the above
expression which depends on τ and define the following
optimal stopping problem:

min
τ

E

[
2x2

τ(T − τ)+ (1−α)(T − τ)2
]
.

Consider the candidate maximum expected reward function:

g(x, t) = A

{
(T − t)2 + 2x2 (T − t)+

x4

3

}
.

where A is a constant chosen such that g(x,t)−2x2(T −t)−
(1−α)(T −t)2 becomes a perfect square. The only possible

value for A then is A = (5+α)−
√

(5+α)2−24
4 . Then the optimal

stopping time is given by:

τ∗ = inf
t

{
t : g(xt , t) ≤ 2x2

t (T − t)+ (1−α)(T − t)2} ,

= inf
t

{
t : x2

t ≥
√

3(A−1+ α)
A

(T − t)

}
,

and the corresponding optimal distortion J becomes

J = (1−A)
T2

2
.

We obtain the explicit stopping rules and the corresponding
minimal distortions for different values of the sample budget
N by defining recursively κN ,γN :

κN = 1−
(5+ κN−1)−

√
(5+ κN−1)

2 −24

4
,

γN =

√
3(κN−1 −κN)

1−κN
.
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The (k + 1)th sampling time is chosen as:

τk+1 = inf
t≥τk

{
t :
(
xt − xτk

)2 ≥ γN−k+1
√

T − t
}

.

4) Comparisons: We list below a numerical comparison
of the aggregate filtering distortions incurred by the three
sampling strategies on the same time interval [0,T ]. We
obtained the distortions for all sampling strategies as a
product of T 2/2 and a positive coefficient. The numbers
listed in the table are these coefficients.

N 1 2 3 4

Deterministic 0.5 0.333 0.25 0.2
Level-triggered 0.3953 0.3471 0.3219 0.3078

Optimal 0.3660 0.2059 0.1388 0.1032

It is rather surprising that deterministic sampling outper-
forms the best level triggering scheme when we use more
than one samples.

III. SAMPLING AN ORNSTEIN UHLENBECK PROCESS

Now we will turn to the case when the signal is an
Ornstein Uhlenbeck process satisfying the SDE

dxt = axtdt + dWt, t ∈ [0,T ], (9)

with x0 = 0 and Wt , as before, being a standard Wiener
process. For the signal estimate x̂t we have that

x̂t = E[xt |Fτi ] = xτi e
a(t−τi), (10)

and the quality of this estimate is measured by the aggregate
squared error distortion defined in (2). Let us examine the
three sampling policies.

A. Optimum deterministic sampling

As in the Wiener case, we will show through induction
that uniform sampling on the interval [0,T ] is the optimal
deterministic choice of N samples at 0 ≤ τ1 ≤ ·· · ≤ τN ≤
T . Denoting by J[0,T ](τ1, . . . ,τN) the distortion using N
samples, let us assume that the optimal choice of N − 1
deterministic samples over [T1,T2] is the set of uniformly
spaced samples between T1 and T2, i.e. τi = T1 + i(T2 −
T1)/N which yields the following distortion

J[T1,T2](τ1, . . . ,τN−1) =
N

4a2

(
e2a

T2−T1
N −1

)
− 1

2a
(T2 −T1) .

Using this for our induction, we have that the minimum
distortion over the set of N sampling times is:

min
τ1,τ2,...τN

J[0,T ] (τ1,τ2, . . .τN)

=min
τ1

{∫ τ1

0
(xs − x̂s)

2ds+ min
τ2,τ2,...τN

J[τ1,T ] (τ2, . . .τN)
}

=min
τ1

{
1

4a2

(
e2aτ1 −1

)
+

N
4a2

(
e2a

T−τ1
N −1

)
− 1

2a
T

}

=
N + 1
4a2

(
e2a T

N+1 −1
)
− 1

2a
T,

the minimum being achieved for τ1 = T/(N +1). Thus, we
have the uniform sampling scheme being the optimal one
here as well.

B. Optimum level-triggered sampling

Let us first address the single sample case. From (3) and
using (10) we conclude that

J(τ1) = E

[∫ T

0
x2

t dt −
∫ T

τ1

(x̂t)2 dt

]

=
e2aT −1−2aT

4a2 −E

[
x2

τ1

e2a(T−τ1)−1
2a

]

= T 2

{
e2aT −1−2aT

4(aT )2 −E

[
x2

τ1

T
e2(aT)(1−τ1/T )−1

2(aT)

]}

= T 2

{
e−2ā −1+ 2ā

4ā2 −E

[
−x̄ 2

τ̄1

e2ā(1−τ̄1)−1
2ā

]}

where
t̄ =

t
T

, ā = aT, x̄t̄ =
x t

T√
T

. (11)

We have x̄ satisfying the following SDE:

dx̄t̄ = −āx̄gt̄dt̄ + dWt̄ .

This suggests that, without loss of generality, we can limit
ourselves to the normalized case T = 1 since the case T �= 1
can be reduced to it by using the transformations in (11)
and thus solve the multiple sampling problem on [0,1].

We carry over the definitions for threshold sampling times
from section II-B.2 We do not have series expansions like
for the case of the Wiener process. Instead we have a
computational procedure that involves solving a PDE initial
and boundary value problem. The distortion corresponding
to a chosen η1 is given by:

J(η1) =
1

4a2

(
e2a −1

)− 1
2a

− η2
1

2a
E

[
e2a(1−τ1)−1

]
=

1
4a2

(
e2a −1

)− 1
2a

− η2
1

2a

(
e2a (1+ 2aU 1(0,0)

)−1
)
,

where the function U 1(x, t) satisfies the PDE:

1
2

U1
xx + axU1

x +U1
t + e−2at = 0,

along with the boundary and initial conditions:{
U1(−η1, t) = U1(η1, t) = 0 for t ∈ [0,1],
U1(x,1) = 0 for x ∈ [−η1,η1].

We choose the optimal η1 by computing the performances
for values of η1 for progressively increasing from 0. We
stop when the cost stops decreasing and starts increasing.
Note that the solution U 1(0, t) to the PDE furnishes us with
the performance of the η1-triggered sampling over [t,1]. We
will use this to solve the multiple sampling problem.

We use the numerical computation of the optimal distor-
tion for the N sample case to compute the performance
of the optimal N + 1 sample threshold sampling policy.
Let the optimal policy of choosing N levels for sampling
over [T1,1] be given where 0 ≤ T1 ≤ 1. Let the resulting
distortion be also known as a function of T1. Let this known

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP1.10

1355



distortion over [T1,1] given N level-triggered samples be
denoted by GN(1−T1). Then, the N +1 sampling problem
can be solved as follows. Let U N+1(x,t) satisfy the PDE:

1
2

UN+1
xx + axUN+1

x +UN+1
t = 0,

along with the boundary and initial conditions:{
UN+1(−η1, t) = UN+1(η1,t) = GN(1− t), for t ∈ [0,1],
UN+1(x,T ) = 0, for x ∈ [−η1,η1].

Then the distortion we are seeking to minimize over η1 is
given by:

J(η1) =
1

4a2

(
e2a −1

)− 1
2a

+E [GN(1− τ1)]

− η2
1

2a
E

[
e2a(1−τ1)−1+

1
4a2

(
e2a(1−τ1)−1

)
− 1

2a
(1− τ1)

]

=
1

4a2

(
e2a −1−2a

)− η2
1

2a
{e2a[1+2aU 1(0,0)]−1}−U N+1.

We choose the optimal η1 by computing the resultant
distortion for increasing values of η1 and stopping when
the distortion stops decreasing.

C. Optimal sampling

We do not have analytic expressions for the minimum
distortion like in the Wiener process case, neither we can
reduce the problem to a PDE with well defined boundary
conditions. Unfortunately the PDE we obtain is of free
boundary type, a fact that makes it difficult to solve the
problem even numerically using standard PDE solvers. We
therefore reduce the problem to discrete time by finely
discretizing time and solving the corresponding discrete-
time optimal stopping problems.

By discretizing time, we get random variables
x0,x1, . . . ,xM, that satisfy the AR(1) model below.
We have x0 = 0 and for 1 ≤ n ≤ M

xn = eaδ xn−1 + wn, wn ∼ N

(
0,

e2aδ −1
2a

)
; 1 ≤ n ≤ M.

The sequence {wn} is an i.i.d. Gaussian sequence.
Sampling once in discrete time means selecting a sample

xν from the set of M + 1 sequentially available random
variable x0, . . . ,xM , with the help of a stopping time ν ∈
{0,1, . . . ,M}. The optimum cost to go can be analyzed
as follows. For n = M,M − 1, . . . ,0, denote the minimum
distortion incurred by using only one sample in [0,T ] by
V 1

n (x). The superscript refers to the number of samples
allowed and the subscript to the minimum distotion incurred
by sampling at discrete time instants no less than n given
that xn = x.

V 1
n (x) = sup

n≤ν≤M
E

[
x2

ν
e2aδ (M−ν) −1

2a

∣∣∣xn = x

]

= max

{
x2 e2aδ (M−n) −1

2a
,E[V 1

n+1(xn+1)|xn = x]

}
.

The above equation provides a (backward) recurrence re-
lation for the computation of the single sampling cost
function V 1

n (x). Notice that for values of x for which the
l.h.s. exceeds the r.h.s. we stop and sample, otherwise we
continue to the next time instant. We can prove by induction
that the optimum policy is a time-varying threshold one.
Specifically for every time n there exists a threshold λn

such that if |xn| ≥ λn we sample, otherwise we go to the
next time instant. The minimum expected distortion for this
single sampling problem is:

e2aT −1−2aT
4a2 −V 1

0 (0).

For obtaining the solution to the N + 1-sampling problem,
we use the solution to the N-sampling problem. For n =
M,M−1, . . .0, the minimal distortion of the N +1 sampling
problem is obtained using the vector{V N

i }M
0 , and choosing

the optimal stopping time ν for the stopping problem below:

V N+1
n (x) = sup

n≤ν≤M
E

[
V N

ν (0)+ x2
ν

e2aδ (M−ν) −1
2a

∣∣∣∣∣xn = x

]

= max

{
V N

n (0)+ x2 e2aδ (M−n) −1
2a

,

V N
n+1(0)+E

[
V 1

n+1(xn+1)|xn = x
]}

.

In Figs. 1 through 4 we can see the relative performance
of the three sampling schemes for values of the parameter
a = −10,−5,−1,1 (value a = 0 corresponds to the Wiener
case).

IV. CONCLUDING REMARKS

We have furnished methods to obtain good sampling
policies for the finite horizon filtering problem. When
the signal to be kept track of is a Wiener process, we
have analytic solutions. When the signal is an Ornstein-
Uhlenbeck process, we have provided computational recipes
to determine the best sampling policies and their perfor-
mance.

We will report elsewhere on the solution to the case when
the sensor has access only to noisy observations of the
signal instead of perfect observations. This leads us to some
simple multi-sensor sampling and filtering problems which
can be solved in the same way.

The case where the samples are not reliably transmitted
but can be lost in transmission is computationally more
involved. There, the relative performances of the three
sampling strategies is unknown. However, in principle, the
best policies and their performances can be computed using
nested optimization routines like we have used in this paper.

Another set of unanswered questions involves the perfor-
mance of these sampling policies when the actual objective
is not filtering but control or signal detection based on
the samples. It will be very useful to know the extent to
which the overall performance is reduced by using sampling
designs that achieve merely good filtering performance.
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Fig. 1. Relative distortions incurred by the three samplings schemes when
a = −10.
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Fig. 2. Relative distortions incurred by the three samplings schemes when
a = −5.
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[5] Karl Johan Åström and Bo Bernhardsson, “Comparison of Riemann
and Lebesgue sampling for first order stochastic systems”, in Proceed-
ings of the 41st IEEE conference on Decision and Control (Las Vegas
NV, 2002). 2002, pp. 2011–2016, IEEE Control Systems Society.

1 1.5 2 2.5 3 3.5 4
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Performance of deterministic, optimal and level−triggered sampling policies for a = −1

Number of samples allowed

M
in

im
um

 d
is

to
rt

io
n 

of
 e

st
im

at
or

Best deterministic sampler
Best level−triggered sampler
Optimal sampler

Fig. 3. Relative distortions incurred by the three samplings schemes when
a = −1.

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Performance of deterministic, optimal and level−triggered sampling policies for a = 1

Number of samples allowed

M
in

im
um

 d
is

to
rt

io
n 

of
 e

st
im

at
or

Best deterministic sampler
Best level−triggered sampler
Optimal sampler

Fig. 4. Relative distortions incurred by the three samplings schemes when
a = 1.

[6] Orhan C. Imer and Tamer Basar, “Optimal estimation with limited
measurements”, in Proceedings of the 44rd IEEE conference on
Decision and Control and European Control Conference (Seville,
Spain, 2004). 2005, pp. 1029–1034, IEEE Control Systems Society.

[7] Maben Rabi and John S. Baras, “Sampling of diffusion processes for
real-time estimation”, in Proceedings of the 43rd IEEE conference
on Decision and Control (Paradise Island Bahamas, 2004). 2004, pp.
4163–4168, IEEE Control Systems Society.

[8] Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochas-
tic calculus, vol. 113 of Graduate Texts in Mathematics, Springer-
Verlag, New York, second edition, 1991.

[9] A. N. Shiryaev, Optimal stopping rules, Springer-Verlag, 1978,
translated from the Russian Statisticheskii posledovatelnyi analiz.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeIP1.10

1357



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


