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Abstract

In recent years several tools based on statistical meth-
ods and machine learning have been incorporated in se-
curity related tasks involving classification, such as in-
trusion detection systems (IDSs), fraud detection, spam
filters, biometrics and multimedia forensics. Measur-
ing the security performance of these classifiers is an
essential part for facilitating decision making, deter-
mining the viability of the product, or for comparing
multiple classifiers. There are however relevant con-
siderations for security related problems that are some-
times ignored by traditional evaluation schemes. In this
paper we identify two pervasive problems in security-
related applications. The first problem is the usually
large class imbalance between normal events and attack
events. This problem has been addressed by evaluating
classifiers based on cost-sensitive metrics and with the
introduction of Bayesian Receiver Operating Character-
istic (B-ROC) curves. The second problem to consider
is the fact that the classifier or learning rule will be de-
ployed in an adversarial environment. This implies that
good performance on average might not be a good per-
formance measure, but rather we look for good perfor-
mance under the worst type of adversarial attacks. In
order to address this notion more precisely we provide
a framework to model an adversary and define security
notions based on evaluation metrics.

Introduction
The accepted paradigm for designing and evaluating ma-
chine learning algorithms is to induce a classifier from train-
ing data sets and then measure their classification perfor-
mance in test data sets (usually performing some kind of
cross-validation). The training data set consists on examples
of one class (unsupervised learning) or both classes (super-
vised learning). The test data set usually consists of labeled
examples with the known truth (labeled with the correct
class). The classification performance is usually measured
by its accuracy or in the case of cost sensitive classification
or class imbalances, by the tradeoff between the false alarm
rate and the detection rate (the ROC curve).

The computer security community has borrowed these
evaluation methods when using statistical and machine
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learning tools for designing classifiers. There are however
a large set of assumptions in this traditional paradigm that
might not hold in practice for information security.

The first problem is that in practice, the large number of
false alarms is one of the principal deterrents for the use
of classifying techniques such as intrusion detection sys-
tems. The large number of false alarms is still a problem
even when the evaluation methods have predicted what is
typically considered small false alarm rates, such as 0.01 or
0.001. The problem is that in several security-related classi-
fication tasks, the number of normal events highly outnum-
bers the number of attack events. It is therefore important
that designers specify clearly theunit of analysisand the
expected likelihood of an attack, so that the evaluation can
yield a better prediction and intuitive understanding of the
real performance of the classifier.

The second problem is that traditional evaluation metrics
are based on ideas mainly developed for non-security related
fields and therefore, they do not take into account the role
of an adversary. In practice, sophisticated attackers will try
to react against any spam filter or intrusion detection tech-
nique implemented, trying to bypass or deteriorate the per-
formance of the classifier. This problem has not been tra-
ditionally addressed by the statistical learning community,
after all, the Reuters-21578 data set never tried to evade
your classifier1.

In the first part of this paper we summarize some of the
metrics used in the intrusion detection community in order
to deal with the class imbalance problem, and in the second
part of the paper we present a set of guidelines and discuss
examples of robust evaluation against adaptive attackers.

Evaluation Under Class Imbalances
The termclass imbalancerefers to the case when in a classi-
fication task, there are many more instances of some classes
than others. Theproblemis that under this setting, classifiers
in general perform poorly because they tend to concentrate
on the large classes and disregard the ones with few exam-
ples.

Given the importance of the class imbalance problem in
intrusion detection systems, several researches have pro-
posed metrics that take into account the very few instances

1From http://taint.org



State of the system Detector’s report
No Alarm (A=0) Alarm (A=1)

No Intrusion (C = 0) L(0,0) L(0,1)
Intrusion (C = 1) L(1,0) L(1,1)

Table 1: Loss function

of attacks. In this section we briefly summarize the metrics
proposed for the evaluation of IDSs.

Before we present our formulation we need to introduce
some notation and definitions. Assume that the input to
the classifier is a feature-vectorx. Let C be an indicator
random variable denoting whetherx belongs to class zero:
C = 0 (the majority class) or class one:C = 1 (the minor-
ity class). The output of the classifier is denoted byA = 1
(or simply A) if the classifier assignsx to class one, and
A = 0 (or alternatively¬A) if the classifier assignsx to class
zero. With this notion we can define theprobability of false
alarm PFA≡Pr[A= 1|C= 0] and theprobability of detection
PD ≡ Pr[A = 1|C = 1]. Finally, the class imbalance prob-
lem is quantified by the probability of a positive example
p = Pr[C = 1].

Expected Cost

The most traditional way of dealing with class imbalances
under a single metric is to use Bayesian decision theory,
an approach presented in (Gaffney & Ulvila 2001). In this
method, a quantitative measure of the consequences of the
output of the IDS to a given event are the costs shown in
Table 1.

Theexpected cost(or Bayes risk) is defined asE[L(C,A)].
The basic idea to deal with the class imbalance in this setting
is to set the cost of missing an attack instance much higher
than the cost of raising a false alarm.

The Intrusion Detection Capability

The main motivation for introducing theintrusion detection
capability CID as an evaluation metric originates from the
fact that the costs in Table 1 are chosen in a subjective way
(Gu et al. 2006). Therefore the authors propose the use
of the intrusion detection capability as an objective metric
motivated by information theory:

CID =
I(C;A)
H(C)

where I and H respectively denote the mutual informa-
tion and the entropy. TheH(C) term in the denomina-
tor is a normalizing factor so that the value ofCID is al-
ways in the[0,1] interval. CID can be interpreted as an
instance of the expected cost problem with costs given by
L(i, j) = − logPr[C = i|A = j]. Note however that the costs
in this case are not constant and depend onp, PFA andPD.

B-ROC curves

There are instances where the tradeoff of the objectives is
a qualitative judgment best left to the user. In this case we

need to consider the tradeoff between the parameters of in-
terest. We therefore investigate which parameters are better
suited to consider as trade-offs.

Of interest to the intrusion detection community, is that
classifiers with ROC curves achieving traditionally “good”
operating points such as(PFA = 0.01,PD = 1) would still
generate a huge amount of false alarms in realistic scenarios.
This effect is due in part to the class imbalance problem,
which is the cause of the base-rate fallacy (Axelsson 1999).
In order to understand this problem, we now use two more
metrics. Thepositive predictive value(or precision) PPV≡
Pr[C = 1|A = 1], and thenegative predictive value NPV≡
Pr[C = 0|A = 0].
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Figure 1: PPV and NPV isolines for the ROC of a typical
IDS

In Figure 1 we can see the tradeoff of the four variables of
interest:PFA in thex-axis,PD in they-axis,PPV as the di-
agonal isolines, andNPV as the horizontal isolines. Notice
that if we choose the optimal operating point based inPFA
andPD, as in the typical ROC analysis, we might obtain mis-
leading results because we do not know how to interpret in-
tuitively very low false alarm rates, e.g. isPFA = 10−3 much
better thanPFA = 5×10−3? The same reasoning applies to
the study of PPV vs. NPV as we cannot interpret precisely
small variations in NPV values, e.g. isNPV = 0.9998 much
better thanNPV = 0.99975? Therefore we conclude that
the most relevant metrics to use for a tradeoff in the perfor-
mance of a classifier in heavily imbalanced data sets arePD
and PPV, since they have an easily understandable range of
interest.

However, even when you select as tradeoff parameters the
PPV andPD values, the isoline analysis shown in Figure 1
has still one deficiency, and it is the fact that there is no
efficient way to account for the uncertainty ofp. In order to
solve this problem we introduce the B-ROC as a graph that
shows how the two variables of interest:PD andPPV are
related under different severity of class imbalances. In order
to follow the intuition of the ROC curves, instead of using
PPV for the x-axis we prefer to use 1−PPV. We use this
quantity because it can be interpreted as theBayesian false
alarm rate: BFA ≡ Pr[C = 0|A = 1]. For example, for IDSs
BFA can be a measure of how likely it is, that the operators
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Figure 2: B-ROC for the ROC of Figure 1.

of the detection system will loose their time each time they
respond to an alarm. Figure 2 shows the B-ROC for the ROC
presented in Figure 1. More details and properties of B-ROC
curves can be found in (Ćardenas & Baras 2006).

Towards Secure Classification
In this section we focus on designing a practical method-
ology for dealing with attackers. In particular we propose
the use of a framework where each of these components is
clearly defined:

Desired Properties Intuitive definition of the goal of the
system.

Feasible Design SpaceThe design spaceS for the classifi-
cation algorithm.

Information Available to the Adversary Identify which
pieces of information can be available to an attacker.

Capabilities of the Adversary Define a feasible class of
attackersF based on the assumed capabilities.

Evaluation Metric The evaluation metric should be a rea-
sonable measure how well the designed system meets our
desired properties. We call a systemsecureif its metric
outcome is satisfied for any feasible attacker.

Goal of the Adversary An attacker can use its capabilities
and the information available in order to perform two
main classes of attacks:

• Evaluation attack. The goal of the attacker is oppo-
site to the goal defined by the evaluation metric. For
example, if the goal of the classifier is to minimize
E[L(C,A)], then the goal of the attacker is to maximize
E[L(C,A)].
• Base system attack. The goal of an attacker is not the

opposite goal of the classifier. For example, even if
the goal of the classifier is to minimizeE[L(C,A)], the
goal of the attacker is still to minimize the probability
of being detected.

Model Assumptions Identify clearly the assumptions
made during the design and evaluation of the classifier.
It is important to realize that when we borrow tools
from other fields, they come with a set of assumptions
that might not hold in an adversarial setting, because

the first thing that an attacker will do is violate the
set of assumptions that the classifier is relying on for
proper operation. Therefore one of the most important
ways to deal with an adversarial environment is to limit
the number of assumptions made, and to evaluate the
resiliency of the remaining assumptions to attacks.

We now present four examples to illustrate the applicabil-
ity of the guidelines.

Example 1: Secret key Encryption
Cryptography is one of the best examples in which a precise
framework has been developed in order to define properly
what a secure system means, and how to model an adversary.
Therefore, before we use the guidelines for the evaluation of
classifiers, we describe a very simple example in cryptogra-
phy. We believe this example clearly identifies the generality
and use of the guidelines as a step towards achieving sound
designs2.

In secret key cryptography, Alice and Bob share a single
key sk. Given a messagem (calledplaintext) Alice uses an
encryption algorithm to produce unintelligible dataC (called
ciphertext): C← Esk(m). After receivingC, Bob then uses
skand a decryption algorithm to recover the secret message
m= Dsk(C).

Desired Properties E andD should enable Alice and Bob
to communicate secretly, that is, a feasible adversary
should not get any information aboutm given C except
with very small probability.

Feasible Design SpaceE andD have to be efficient proba-
bilistic algorithms. They also need to satisfy correctness:
for anyskandm, Dsk(Esk(m)) = m.

Information Available to the Adversary It is assumed
that an adversary knows the encryption and decryption
algorithms. The only information not available to the
adversary is the secret keysk shared between Alice and
Bob.

Capabilities of the Adversary The class of feasible adver-
sariesF is the set of algorithms running in a reasonable
amount of time.

Evaluation Metric For any messagesm0 andm1, given a
ciphertextC which is known to be an encryption of either
m0 or m1, no adversaryA ∈ F can guess correctly which
message was encrypted with probability significantly bet-
ter than 1/2.

Goal of the Adversary Perform an evaluation attack. That
is, design an algorithmA ∈ F that can guess with prob-
ability significantly better than 1/2 which message corre-
sponds to the given ciphertext.

Model Assumptions The security of an encryption scheme
usually relies in a set of cryptographic primitives, such as
one way functions.

2We avoid the precise formal treatment of cryptography be-
cause our main objective here is to present the intuition behind the
principles rather than the specific technical details.



Another interesting aspect of cryptography is the different
notions of security when the adversary is modified. In the
previous example it is sometimes reasonable to assume that
the attacker will obtain valid plaintext and ciphertext pairs:
{(m0,C0),(m1,C1), . . . ,(mk,Ck)}. This new setting is mod-
eled by giving the adversary more capabilities: the feasible
setF will now consist of all efficient algorithms that have
access to the ciphertexts of chosen plaintexts. An encryp-
tion algorithm is therefore secure againstchosen-ciphertext
attacks if even with this new capability, the adversary still
cannot break the encryption scheme.

Example 2: Adversary with Control of the
Base-Rate p
In this example we introduce probably one of the easiest for-
mulations of an attacker against a classifier: we assume that
the attacker cannot change its feature vectorsx, but rather
only its frequency of attacks:p.

We consider an intrusion detection system that monitors
audit logs and has a false alarm rate ofP̂FA and a detection
rate ofP̂D. Assume now that the operator of the IDS has to
decide whether to investigate audit logs or not based on the
alarms reported by the IDS. The following table represents
the possible decisions of the operator:

h1(¬A) = 0 h1(A) = 0
h2(¬A) = 1 h2(A) = 0
h3(¬A) = 0 h3(A) = 1
h4(¬A) = 1 h4(A) = 1

For exampleh1 represents the case when the operator does
not check audit logs, andh3 represents the case when the
operator checks the audit log if and only if there is an alarm.
Assume the operator decides onhi with probabilityπi .

Desired Properties Assume the operator wants to find a
strategy that minimizes the probability of making errors.
This is an example of the expected cost metric function
with L(0,0) = L(1,1) = 0 andL(1,0) = L(0,1) = 1.

Feasible Design SpaceS = {πi ∈ [0,1] : π1 + π2 + π3 +
π4 = 1}.

Information Available to the Adversary We assume the
adversary knows everything that we know and can make
inferences about the situation the same way as we can.
In game theory this adversaries are usually referred to as
intelligent.

Capabilities of the Adversary The adversary has com-
plete control over the base-ratep (its frequency of at-
tacks). The feasible set is thereforeF = [0,1].

Goal of the Adversary Evaluation attack.

Evaluation Metric

r∗ = min
πi∈S

max
p∈F

E[L(C,A)]

Note the order in optimization of the evaluation metric.
In this case we are assuming that the operator of the IDS
makes the first decision, and that this information is then
available to the attacker when selecting the optimalp. We
call the strategy of the operatorsecureif the expected cost

(probability of error) is never greater thanr∗ for any fea-
sible adversary.

Model Assumptions We have assumed that the attacker
will not be able to changêPFA andP̂D. This results from
its assumed inability to directly modify the feature vector
x (the security logs in this case).

The solution to this problem is easy to find once we iden-
tify it as a zero-sum game between the IDS operator and the
attacker.
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Figure 3: Probability of error forhi vs. p

Assuming P̂FA = 0.5 and P̂D = 0.75, the strategy that
achieves a Nash equilibrium is for the operator of the IDS
to selectπ∗1 = 1/5 andπ∗3 = 4/5, and for the attacker to
selectp∗ = 2/5 (see Figure 3). Therefore, after fixing the
detection strategy, it does not matter if an attacker uses ap
different from p∗ because in the evaluation it is guaranteed
that the probability of error will be no worse than 2/5. So
the evaluation estimating a probability of error of 2/5 is se-
cure (Ćardenas, Baras, & Seamon 2006).

It is important to note also that Figure 3 is a graph tradi-
tionally used in detection theory and game theory, and which
has gained recent popularity in the machine learning com-
munity under the name ofcost curves(Drummond & Holte
2001).

Example 3: Adversary with Partial Control Over
the Observed Features
In the previous example the evaluation follows the tradi-
tional paradigm in which we assume the classifier is eval-
uated in data containing both normal and attack examples.
We now turn to a more difficult problem: how to evaluate a
classifier without attack data.

In this example the adversary is allowed to be more pow-
erful by being able to modify the feature vectorx observed
in an attack. To illustrate an approach on how to formu-
late this problem we now turn our attention to watermarking
(data hiding) schemes for multimedia data. In this scenario
we assume we have a signals (e.g., an image or an audio
signal) to be marked. Assume that a classifier has learnt the
signal distributionf (s) via one class learning (recognition
based learning).



Assume also there are two sources of content. Source 0
produces content without watermarks:y = s, and source 1
produces content with random watermarksy = s+w, where
w is assumed to have distributionfw(w). Furthermore as-
sume that an attacker will modifyy in order to produce the
final observablex to the classifier. Note that the classifier
does not have direct access tos or x, it only has knowledge
of their probability distributions (this is known as blind wa-
termarking).

Desired Properties The classifier has to determine if a
givenx has a watermark or not.

Feasible Design SpaceThe watermark should not distort
the signal too much (the watermark should be invisible
or inaudible for a human). Therefore the encoder of the
watermark has to designfw(w) such that the average dis-
tortion is bounded by a givenDw. S is then the set of all
pdf’s fw such thatE[d(S,S+W)]≤ Dw.

Information Available to the Adversary The only infor-
mation not available to the adversary is the particular re-
alizations ofS and W. So given a watermarked signal
y, the adversary does not knows or w. Then again, this
realizations are also not known to the classifier.

Capabilities of the Adversary As in the design space, an
adversary also has a distortion constraint. Therefore
F is the set of all conditional pdf’sfx|y(x|y) such that
E[d(Y,X)]≤ Da.

Goal of the Adversary Evaluation attack.

Evaluation Metric Minimize the probability of error for
the worst type of feasible attacks. Again this is just
the expected cost metric withL(0,0) = L(1,1) = 0 and
L(1,0) = L(0,1) = 1.

r∗ = min
fw∈S

max
fx|y∈F

E[L(C,A)]

We call the strategy of the encodersecureif the probabil-
ity of error is never greater thanr∗ for any feasible adver-
sary.

Model Assumptions The robustness of the evaluation de-
pends on how closef (s) follows the real distribution of
the source signal. If the real distribution ofschanges or is
not close enough to the learnt modelf (s), then the error
in practice will be higher.

Finding optimal solutions for the above mentioned prob-
lem is sometimes intractable, and therefore some more sim-
plifications are usually made. For example the attack distri-
bution fx|y is most of the times assumed to be memoryless
(i.e., fx|y(x|y) = ∏ f (xi |yi)). A survey of the analytical treat-
ment of watermarking schemes can be found in (Moulin &
Koetter 2005).

Example 4: Attacker With Complete Control of the
Attack Distribution
An alternative view for finding least favorable attack distri-
butions can be seen in the problem of detecting misbehavior
in the MAC layer of wireless ad hoc networks (Radosavac,
Baras, & Koutsopoulos 2005; Radosavacet al. 2006). In

this case the feature vectorx1,x2, . . . ,xn is a collection of
back off times from a given node. We know the distribu-
tion of the normal instances (the specified back off protocol)
and the problem is to find the optimal attack distribution that
maximizes the number of times a selfish node accesses the
MAC layer without being detected.

The pdf f0(x) of the normal behavior is assumed to be
known or alternatively assumed that it can be learnt via one-
class learning, however since the attacker can change its
strategy, we cannot trust a machine learning technique to es-
timate f1(x) because the attacker can modify arbitrarily its
strategy during the test period.

Desired Properties Detect misbehaving nodes as soon as
possible at an acceptable false alarm rate.

Feasible Design SpaceS is defined to be any sequential
test that satisfies a given false alarm and detection rates.
A sequential test is an algorithm which with every new
sample obtainedxi , either decides to classify based on
x1, . . . ,xi or waits for the next sample.

Information Available to the Adversary The adversary
knows everything that we know and can make inferences
about the situation the same way as we can.

Capabilities of the Adversary The adversary has control
over its back-off distribution. The distribution however
is assumed to be memoryless (the samples are i.i.d.). The
feasible set of attacks is parameterized with parameterη
(a measure of how aggressive the attacker is):

Fη =
{

f1 :
∫ W

0

(
1− x

W

)n
f1(x)dx≥ η

1
n+1

}
.

Goal of the Adversary Evaluation attack.

Evaluation Metric Obtain a saddle point for the amount of
samples taken before reaching a decision:

φ(h∗, f1)≤ φ(h∗, f ∗1 )≤ φ(h, f ∗1 ); ∀h∈ S , ∀ f1 ∈ Fη.

whereφ(h, f ) is the expected value of the number of sam-
ples collected before reaching a decision.φ(h∗, f ∗1 ) is se-
cure if the expected time before reaching a decision is
never greater for any feasible adversary.

Model Assumptions The attacker was constrained to be
i.i.d. Furthermore, depending on the network, it might
be difficult to modelf0 accurately: even though we know
the back off specification for the MAC layer, the exponen-
tial back off mechanism and noisy observations can be a
problem in practice.

On the Goal of the Adversary
So far all the examples we have considered assume only
evaluation attacks, and all the evaluation attacks we pre-
sented can in fact be seen as zero sum games between the
designer of the classifierh and the attacker.

Base system attacks on the other hand can be consid-
ered as nonzero sum games between the designer and the
attacker, since the adversary will have a different objective
function. These attacks are intuitively appealing in many
classification scenarios. For example the primary goal of a



Advantage Disadvantage

Evaluation
Attacks

More robust against
modeling errors

Pessimistic evalua-
tion: might be too
restrictive

Base
System
Attacks

Can model more re-
alistic attackers

Makes extra assump-
tions that might not
hold in practice

Table 2: Goal of the adversary

spammer is to get the spam e-mails past spam filters, while
the goal of the filter is to detect the spam messages and also
maintain a low false alarm rate. Furthermore the utility of
the spammer by getting an e-mail past the filter might be
different to the cost the filter incurs by letting the message
through. A formulation of base system attacks in spam fil-
ters can be found in (Dalviet al. 2004).

By contrast, assuming that the attacker does not attack di-
rectly the evaluation of the system has some disadvantages.
In particular we note that if the attacker deviates from the
proposed goal (the adversary is not a rational player) or if
the attacker has a different objective than the one it was as-
sumed, the classifier can perform worse than what was de-
termined by the evaluation.

However, the metric against evaluation attacks gives a
lower bound on the performance of the classifier. If in real
life, the attacker has another goal, or it deviates from the ob-
jective, the performance of the classifier will not be worse
than the estimated value.

Table 2 summarizes the advantages and disadvantages of
the different types of attacks considered.

Conclusions
The topics we have presented are just a small sample of a
wide area of problems that need consideration. For exam-
ple, obtaining optimal solutions to adversarial problems is
often intractable. Therefore a compromise must be achieved
sometimes between the accuracy of the model and the effi-
ciency of solving the optimization problems.

It is also important to realize that the classifier is just a
component of a larger system that has to be evaluated as a
whole. For example, an IDS at the MAC layer of a commu-
nications networks should be evaluated with respect to the
overall performance of the network. We can tolerate misbe-
havior as long as the network performance is not impacted.

A complimentary approach to the fully technical evalu-
ation is that of using financial metrics. Several companies
currently use metrics such as the return of investment, net
present value and the internal rate of return for their security
investments.

We should also point out that all our secure evaluations
were done with evaluation metrics that return a single value.
Therefore another important problem is how to define new
meaningful performance tradeoffs and how to evaluate the
security of classification with performance curves.

Finally, how to model accurately an adversary and its ca-
pabilities is a very important field. We for example did not
considered the problem of how to train classifiers when the

adversary can create errors in the labels of the training data
set (Barrenoet al. 2006).
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