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Abstract— In early work of the authors, it was shown
that Gibbs sampler based sequential annealing algorithm
could be used to achieve self-organization in swarm vehicles
based only on local information. However, long travelling time
presents barriers to implement the algorithm in practice. In
this paper we study a popular acceleration approach, the
parallel annealing algorithm, and its convergence properties.
We first study the convergence and equilibrium properties
of the synchronous parallel sampling algorithm. A special
example based on a battle field scenario is then studied.
Sufficient conditions that the synchronous algorithm leads
to desired configurations (global minimizers) are derived.
While the synchronized algorithm reduces travelling time,
it also raises delay and communication cost dramatically, in
order to synchronize moves of a large group of vehicles. An
asynchronous version of the parallel sampling algorithm is
then proposed to solve the problem. Convergence properties
of the asynchronous algorithm are also investigated.

I. INTRODUCTION

In recent years, with the rapid advances in sensing, com-
munication, computation, and actuation capabilities, groups
(or swarms) of autonomous unmanned vehicles (AUVs) are
expected to cooperatively perform dangerous or explorative
tasks in a broad range of potential applications [1]. Due
to the large scales of vehicle networks and bandwidth
constraints on communication, distributed control and co-
ordination methods are especially appealing [2], [3], [4],
[5].

A popular distributed approach is based on artificial
potential functions (APF), which encode desired vehicle
behaviors such as inter-vehicle interactions, obstacle avoid-
ance, and target approaching [6], [7], [8], [9]. Despite its
simple, local, and elegant nature, this approach suffers from
the local minima entrapment problem [10]. Researchers
attempted to address this problem by designing potential
functions that have no other local minima [11], [12], or
escaping from local minima using ad hoc techniques, e.g.,
random walk [13].

An alternative approach to dealing with the local minima
problem was explored using the concept of Markov Random
Fields (MRFs) and simulated annealing (SA) approach
by Baras and Tan [14]. Traditionally used in statistical
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mechanics and in image processing [15], MRFs were pro-
posed to model swarms of vehicles. Similar to the APF
approach, global objectives and constraints (e.g., obstacles)
are reflected through the design of potential functions.
The movement of vehicles is then decided using a Gibbs
sampler based SA approach. The SA algorithm has also
been adopted for UAV preposition in [16].

Theoretical studies and simulations have shown that,
with a special sequential sampling, the global goals can
be achieved despite the presence of local minima in the
potentials [17], [18]. However, the maintainance of global
indices, which is required for sequential sampling, in large
vehicle networks, is difficult when there exist node failures.
Moreover, long maneuvering time, which is due to the fact
that only one vehicle moves at each time instance, presents
difficulties in practice.

The above problems can be resolved using parallel sam-
pling [14], i.e., each node in the vehicle swarm executes
the local Gibbs sampling in parallel. Parallel sampling
techniques have been studied for many years in order
to accelerate the slow convergence rate of the sequential
simulated annealing algorithm [19]. It is usually required
that nodes update their locations at the same time clock
(synchronously). However, synchronization causes commu-
nication cost and delay, which degrade performance. This
can be resolved by using asynchronous parallel sampling,
i.e., each vehicle uses its own clock to do the local sampling.

In this paper, we first investigate the convergence prop-
erties of a synchronous parallel sampling algorithm. In
the analysis of the asynchronous parallel algorithm, the
fact that there is a “time-varying” number of active nodes
presents challenges. Fortunately, by applying a partially
parallel model in [20], the asynchronous algorithm could
be described by a homogeneous Markov chain. The conver-
gence of the asynchronous parallel algorithm then follows.
Finally, a special example based on a battle field scenario
was investigated. Sufficient conditions that guarantee the
optimality of the parallel sampling algorithm were analyzed.

II. REVIEW OF GIBBS SAMPLER BASED ALGORITHM

A. MRFs and Gibbs Sampler

One can refer to, e.g., [15], [21], for a review of MRFs.
Let S be a finite set of cardinality σ, with elements indexed
by s and called sites. For s ∈ S, let Λs be a finite set
called the phase space for site s. A random field on S is
a collection X = {Xs}s∈S of random variables Xs taking
values in Λs. A configuration of the system is x = {xs, s ∈
S}, where xs ∈ Λs, ∀s. The product space Λ1×· · ·×Λσ is



called the configuration space. A neighborhood system on
S is a family N = {Ns}s∈S , where ∀s, r ∈ S,

– Ns ⊂ S,
– s /∈ Ns, and
– r ∈ Ns if and only if s ∈ Nr.

Ns is called the neighborhood of site s. The random field
X is called a Markov random field (MRF) with respect to
the neighborhood system N if, ∀s ∈ S, P (Xs = xs|Xr =
xr, r �= s) = P (Xs = xs|Xr = xr, r ∈ Ns).

A random field X is a Gibbs random field if it has the
Gibbs distribution:

P (X = x) =
e−

U(x)
T

Z
, ∀x,

where T is the temperature variable (widely used in sim-
ulated annealing algorithms), U(x) is the potential (or
energy) of the configuration x, and Z is the normalizing
constant, called the partition function: Z =

∑
x e−

U(x)
T .

One then considers the following useful class of poten-
tial functions U(x) =

∑
s∈Λ Φs(x), which is a sum of

individual contributions Φs evaluated at each site. The
Hammersley-Clifford theorem [21] establishes the equiva-
lence of a Gibbs random field and an MRF.

The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods, which sample Markov
chains leading to stationary distributions. The algorithm
updates the configuration by visiting sites sequentially or
randomly following a certain proposal distribution [15], and
by sampling from the local specifications of a Gibbs field.
A sweep refers to one round of sequential visits to all sites,
or σ random visits under the proposal distribution.

The convergence of the Gibbs sampler was studied by D.
Geman and S. Geman in the context of image processing
[22]. There it was shown that as the number of sweeps goes
to infinity, the distribution of X(n) converges to the Gibbs
distribution Π. Furthermore, with an appropriate cooling
schedule, simulated annealing using the Gibbs sampler
yields a uniform distribution on the set of minimizers of
U(x). Thus the global objectives could be achieved through
appropriate design of the Gibbs potential function.

B. Problem Setup for Self-organization of Multiple Vehicles

Consider a 2D mission space (the extension to 3D space
is straightforward), which is discretized into a lattice of
cells. For ease of presentation, each cell is assumed to be
square with unit dimensions. One could of course define
cells of other geometries (e.g., hexagons) and of other
dimensions (related to the coarseness of the grid) depending
on the problems at hand. Label each cell with its coordinates
(i, j), where 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, for N1, N2 > 0.
There is a set of vehicles (or mobile nodes) S indexed by
s = 1, · · · , σ on the mission space. To be precise, each
vehicle s is assumed to be a point mass located at the center
of some cell (is, js), and the position of vehicle s is taken
to be ps = (is, js). At most one vehicle is allowed to stay
in each cell at any time instant.

The distance between two cells, (ia, ja) and (ib, jb), is
defined to be

R
�
= ‖(ia, ja) − (ib, jb)‖ =

√
(ia − ib)2 + (ja − jb)2.

There might be multiple obstacles in the space, where an
obstacle is defined to be a set of adjacent cells that are
inaccessible to vehicles. For instance, a “circular” obstacle
centered at pok = (iok, jok) with radius Rok can be defined

as O
�
= {(i, j) :

√
(i − iok)2 + (j − jok)2 ≤ Ro}. The

accessible area is the set of cells in the mission space that
are not occupied by obstacles. An accessible-area graph can
then be induced by letting each cell in the accessible area
be a vertex and connecting neighboring cells with edges.
The mission space is connected if the associated accessible-
area graph is connected, which will be assumed in this
paper. There can be at most one target area in the space. A
target area is a set of adjacent cells that represent desirable
destinations of mobile nodes. A “circular” target area with
its center at pg can be defined similarly as a “circular”
obstacle. An example mission scenario is shown in Fig. 1.
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Fig. 1. An example mission scenario with a circular target and a
nonconvex obstacle (formed by two overlapping circular obstacles). Note
since the mission space is a discretized grid, a cell is taken to be within a
disk if its center is so.

In this paper all vehicles are assumed to be identical.
Each vehicle has a sensing range Rs: it can detect whether
a cell within distance Rs is occupied by some node or obsta-
cle through sensing or direct inter-vehicle communication.
The motion decision of each node s depends on other nodes
located within distance Ri (Ri ≤ Rs), called the interaction
range. These nodes form the set Ns of neighbors of node s.
A node can travel at most Rm (Rm ≤ Rs), called moving
range, within one move. See Fig. 2 for illustration of these
range definitions.

The neighborhood system defined earlier naturally leads
to a dynamic graph, where each vehicle represents a vertex
of the graph and the neighborhood relation prescribes the
edges between vehicles. An MRF can then be defined on
the graph, where each vehicle s is a site and the associated
phase space Λs is the set of all cells located within the
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Fig. 2. Illustration of the sensing range Rs, the interaction range Ri,
and the moving range Rm.

moving range Rm from location ps and not occupied by
obstacles or other vehicles. The configuration space of the
MRF is denoted as X .

The Gibbs potential U(x) =
∑

s Φs(x), where Φs(x) is
considered to be a summation of all clique potentials Ψc(x),
and depends only on xs and {xr, r ∈ Ns}. The clique
potentials Ψc(x) are used to describe local interactions
depending on applications. Specifically,

Φs(x) =
∑
c�s

Ψc = Ψ{s}(xs) +
∑

r∈Ns

Ψ{s,r}(xs, xr). (1)

In the battle field scenario, the potential function Φs(x)
consists of three terms each reflecting one goal or constraint.

Φs(x) = λgJ
g
s + λoJ

o
s + λnJn

s ,

for the attraction from the target area, the repelling from ob-
stacles, and the pulling force from neighbors, respectively,
and λg, λo, λn are the corresponding weighting coefficients
for adjusting the potential surface. In particular, the follow-
ing potential functions are used for each term:

Jg
s = ‖xs − pg‖

Jo
s =

K∑
k=1

1
‖xs − pok‖ (2)

Jn
s =

∑
t∈Ns

‖xs − xt‖.

There are important differences between a classical MRF
introduced in Subsection II-A and the MRF defined for
the vehicle networks. In a classical MRF, both the phase
space Λs and the neighborhoods Ns are time-invariant;
however, for a vehicle network, both Λs and Ns depend
on the dynamic graph and therefore vary with time. These
differences prevent the classical MRF theory from being
adopted directly for convergence analysis.

III. CONVERGENCE ANALYSIS OF THE PARALLEL

SAMPLING ALGORITHM

In [18], a two-step sequential sampling algorithm was
proposed to coordinate the maneuvers of vehicle swarms to

desired configuration(s). As noted in section I, sequential
location updating leads to an extremely slow convergence
rate. Furthermore, global indexing is challenging for a large
vehicle network when there exist node failures. It is natural
to resolve these disadvantages and difficulties by adopting
the parallel sampling algorithm, i.e., vehicles synchronously
update their locations according to the local statistics.

However, synchronous parallel sampling requires an ex-
plicit global clock to have swarm vehicles move syn-
chronously, which increases the delay and the commu-
nication cost dramatically for a large group of vehicles.
Asynchronous parallel sampling is then adopted to avoid
these penalties. In this section, the convergence properties of
both synchronous and asynchronous algorithms are studied.

A. Synchronous parallel sampling algorithm

Using the synchronous parallel sampling algorithm, ve-
hicles are synchronized to update their locations as follows:

• Step 1. Pick a cooling schedule T (·) and the total
number N of annealing steps. Let annealing step n=1;

• Step 2. Conduct location updates for node 1 through S
in parallel at the same time clock, where node s, 1 ≤
s ≤ S, performs the following:
- Determine the set Ls, of candidate locations, for the
next move:
Ls = Λs ∩ {(i, j) :

√
(i − is)2 + (j − js)2 ≤ Rm},

where Λs represents the set of cells not occupied by
other vehicles or obstacles;
- When two neighboring vehicles (s < s′) have
conflict in their candidate locations, i.e., Ls ∩Ls′ �= ∅,
the vehicle with lower index updates its candidate
locations to Ls ∩ Lc

s′ . Repeat this procedure until
Ls ∩ Ls′ = ∅, for all s �= s′.
- For each vehicle s evaluate the potential function for
every l ∈ Ls,

Φs(xs = l,X(S\s) = x(S\s))
where S\s denotes the complement of s in S. Then
update the location of each vehicle s in parallel by
sampling the local distribution

p(z) =
exp(−Φs(xs=l,X(S\s)=x(S\s))

T (n) )∑
l′∈Ls

exp(−Φs(xs=l′,X(S\s)=x(S\s))
T (n) )

.

• Step 3. Let n = n + 1. If n = N , stop; otherwise go
to Step 2.

For a fixed temperature T , the underlying mathematical
model of the synchronous parallel sampling algorithm is a
homogenous Markov chain defined by

PT (x(n + 1)|x(n))

=
∏
s∈S

(p(xs = xs(n + 1)|xNs
= xNs

(n)))

=
∏
s∈S

e−
Φs(xs=xs(n+1),xNs

=xNs
(n))

T (n)∑
l∈Ls(x(n))

e−
Φs(xs=l,xNs

=xNs
(n))

T (n)

(3)



where ‖xs(n + 1) − xs(n)‖ ≤ Rm for all s ∈ S. Φs(xs =
xs(n + 1), xN (s) = xN (s)(n)) is the local energy which
could be evaluated by vehicle s with only local information.

Proposition 3.1: For a fixed temperature T , the homoge-
neous Markov chain (3) has a unique invariant distribution
ΠT . From any initial distribution ν0

lim
n→∞ν0P

n
T = ΠT (4)

Sketch of Proof. Due to the connectivity of the accessible
area, there exists at least one path between any two con-
figurations x and y (i.e., a sequence of multiple moves
{x, x1, · · · , y}), and the shortest path is bounded by τ
moves for some finite τ . This implies that PT has a strictly
positive power P τ

T , i.e., the τ -step Markov chain reaches
each state with positive probability from any state. The
irreducibility and aperiodicity of the kernel then follows.
Hence the Markov chain is ergodic and has a unique
invariant distribution ΠT for a fixed temperature T [23].
�

Picking an appropriate cooling schedule T (n) and τ , the
simulated annealing algorithm yields a unique distribution
Π∞. This is made precise by the following theorem.

Theorem 3.1: Let Ũ(x, y) : X × X → R be an induced
energy function defined on the clique potentials

Ũ(x, y) =

{ ∑
s∈S

∑
c�s

Ψc(ys, xS\s), when y ∈ Nm(x);

0, otherwise
(5)

where Nm(x) = {z ∈ X : ∀s, ‖zs − xs‖ ≤ Rm}. Let ∆̃
be:

∆̃
�
= max

y,z∈Nm(x)
|Ũ(x, y) − Ũ(x, z)|.

Let T (n) be a cooling schedule decreasing to 0, so that
eventually,

T (n) ≥ τ∆̃
lnn

.

Let Qn = P τ
T (n). Then for any initial distribution ν,

lim
n→∞ νQ1 · · ·Qn → Π∞, (6)

where Π∞ is the limit distribution of (4) as T tends to zero.
In particular,

lim
T→0

ΠT (x) = Π∞(x). (7)

Proof. Let αx = miny∈Nm(x) Ũ(x, y). From (3), we have

PT (x, y) =
exp(− Ũ(x,y)−αx

T )∑
z∈Nm(x)

exp(− Ũ(x,z)−αx

T )
≤ e−

∆̃
T

|Nm(x)| ,

where |Nm(x)| denotes the cardinality of the configuration
space Nm(x). Following analogous arguments to those in
the proof of Theorem 4.2 in [17] , one can show

c(Qn) ≤ 1 − λe−
−τ∆̃
T (n) ,

where c(Qn) denotes the contraction coefficient of Qn, and
λ = |X |

|Nm(x)|τ . Similarly, one can prove the claim (6). �

Remark 3.1: For the parallel sampling algorithm, an ex-
plicit expression for the invariant distribution (4) is gener-
ally lacking. It is hard to analytically study the equilibrium
properties. Here, we offer some brief comments.

Let Ω0 be the set of limiting configuration(s) which is
defined by

Ω0 �
= {x : Π∞(x) > 0}. (8)

Let ΩL be the set of all the local minima of U . Then
we have Ω0 ⊂ ΩL. If the potential function U is “well
behaved”, i.e., {x∗ : U(x∗) = minx U(x)} ⊂ Ω0, there
is a positive chance that the parallel annealing algorithm
leads the final configuration to x∗ as temperature tends to
zero, which is confirmed by extensive simulations in[14]. In
section IV, we analytically study the limiting configurations
for a special example.

B. Asynchronous parallel sampling algorithm

The asynchronous parallel sampling algorithm works
similarly as the synchronous version, except each vehicle
s makes moves independently by following its own time
clock ts = {ts1, ts2, ...}. Thus, at one time instance n, only a
subset of vehicles make a move. The transition probability
from configuration x(n) to x(n + 1) can be written down
as follows

P̃T (x(n + 1)|x(n))

=
∏

s:n∈ts

(pT (xs = xs(n + 1)|xN (s) = xN (s)(n))).

Clearly this formulation leads to an inhomogeneous Markov
chain. In general, an inhomogeneous Markov chain may not
have a unique stationary distribution. This presents chal-
lenges in convergence analysis. To deal with this difficulty,
we adopt the partial parallel model in [20] and model the
asynchronous parallel algorithm as a hierarchical Markov
chain.

Let t = ∪
s∈S

ts denote the set of updating times for all

vehicles. Clearly, t is a countable set. For each time instance
ti ∈ t, each vehicle s has a probability ps to make a move,
which is defined by

ps
�
= lim

|t|→∞
|ts|
|t| ,

where |ts| and |t| denote the cardinality of ts and t
respectively. For the synchronous case, ps ≡ 1; whereas,
for the asynchronous one 0 < ps < 1. Then, the associated
Markov chain kernel PT can be expressed as

P̃T (x(n + 1)|x(n))

=
∏
s∈S

((1 − ps)1xs(n+1)=xs(n) + psPT (x(n + 1)|x(n)))

Since the kernel (9) defines a homogeneous Markov chain,
it follows from proposition 3.1, that the Markov chain has
a unique stationary distribution Π̃T for a fixed temperature.
Then, using a similar argument as in theorem 3.1, with
an appropriate cooling schedule, the asynchronous parallel
annealing algorithm converges to a unique distribution Π̃∞,
where Π̃∞ = limT→∞ Π̃T .



IV. EQUILIBRIUM ANALYSIS OF THE SYNCHRONOUS

PARALLEL ALGORITHM IN AN EXAMPLE

In this section, an explicit ΠT is derived for a particular
example based on the battle field scenario in section II.
Sufficient conditions that guarantee the optimality of the
parallel sampling algorithm are derived.

Proposition 4.1: For the synchronous Markov chain ker-
nel of (3), suppose that Ũ(x, y) defined in (5) has a
symmetric form, i.e., Ũ(x, y) = Ũ(y, x) for all x, y ∈ X .
For a fixed temperature T , the synchronous Markov chain
has a unique stationary distribution ΠT given by

ΠT (x) =

∑
z∈Nm(x)

exp(−Ũ(x, z)/T )

∑
y∈X

∑
z∈Nm(x)

exp(−Ũ(y, z)/T )
(9)

Proof. The existence and uniqueness of a stationary dis-
tribution follows from proposition 3.1. The Markov chain
kernel (3) can be rewritten as

PT (x, y) =
exp(− Ũ(x,y)

T∑
z∈Nm(x)

exp(− Ũ(x,z)
T )

(10)

(9) can then be verified since the balance equation is
fulfilled, i.e.,ΠT (x) ∗ PT (x, y) = ΠT (y) ∗ PT (y, x)�

In general, the symmetry of the energy function Ũ(x, y)
does not hold. However, in some special cases, one can
construct a symmetric energy function for the same parallel
Markov chain kernel.

Theorem 4.1: Suppose that the Markov Random Field
defined in section II consists only of singleton and pairwise
cliques, and the neighborhood system is time-invariant,
then there exist a symmetrized potential function Û which
defines the same parallel Markov chain kernel defined by
Ũ in (10). Specifically,

Û(x, y) = Ũ(x, y) +
∑
s∈S

Ψ{s}(x) (11)

Proof. We first show the symmetry of Û .

Û(x, y) = Ũ(x, y) +
∑
s∈S

Ψ{s}(xs)

=
∑
s∈S

∑
c�s

Ψc(ys, xS\s) +
∑
s∈S

Ψ{s}(xs)

=
∑
s �=t

Ψ{s,t}(ys, xt) +
∑
s∈S

Ψ{s}(ys) +
∑
s∈S

Ψ{s}(xs)

=
∑
s �=t

Ψ{s,t}(xs, yt) +
∑
s∈S

Ψ{s}(xs) +
∑
s∈S

Ψ{s}(ys)

= Ũ(y, x) +
∑
s∈S

Ψ{s}(ys) = Û(y, x)

Because the difference between Û(x, y) and Ũ(x, y)
depends only on the configuration x, the two potential
functions actually define the same Markov chain kernel.
More precisely, for any two configurations x and y, we

have

PT (x, y) =
exp(−Ũ(x, y)/T )∑

z∈Nm(x)

exp(−Ũ(x, z)/T )

=
exp(−Ũ(x, y)/T − ∑

s∈S

Ψ{s}(x)/T )∑
z∈Nm(x)

exp(−Ũ(x, z)/T − ∑
s∈S

Ψ{s}(x)/T )

=
exp(−Û(x, y)/T )∑

z∈Nm(x)

exp(−Û(x, z)/T )
�

Let H̃(x) be the induced energy from the invariant distribu-
tion ΠT (n) of the Markov chain kernel QT (n). Specifically,

H̃(x) = − ln

⎛
⎝ ∑

z∈Nm(x)

exp(−Û(x, z))

⎞
⎠ (12)

Picking an appropriate cooling schedule T (n) as in
theorem 3.1, one could conclude that the asymptotic con-
figuration(s) Ω0 of the parallel sampling algorithm are
the minimizer(s) of H̃(x). Next, one would like to study
whether Ω0 minimize the original configuration energy
U(x).

With the Gibbs potential function defined in (2), the
induced energy function Û(x, y) satisfies the following
inequality

Û(x, y) =
∑
s �=t

λn‖ys − xt‖

+
∑
s∈S

(λg(Jg
s (x) + Jg

s (y)) + λo(Jo
s (x) + Jo

s (y)))

≤
∑
s �=t

λn (‖ys − xs‖ + ‖xs − xt‖)

+
∑
s∈S

(λg(Jg
s (x) + Jg

s (y)) + λo(Jo
s (x) + Jo

s (y)))

≤
∑
s �=t

λnRm + U(x) + U(y)

≤ c1Rm + 2U(x) + ∆ (13)

where ∆ = maxy∈Nm(x)|U(x) − U(y)| is the maximal
local oscillation of the potential U . And c1 =

∑
s �=t λn

From (12) and (13), we have

H̃(x) ≤ M (2U(x) + c1Rm + ∆) (14)

where M = maxx ln |Nm(x)|. Let x∗ be the minimizer
of U(x), i.e., x∗ = arg min

x∈X
U(x). Minimizing both side of

(14), we have

min
x∈X

H̃(x) ≤ M (2U(x∗) + c1Rm + ∆) (15)

Similarly, since ‖xs − xt‖ ≤ Rm + ‖ys − xt‖, it can be
shown that

H̃(x) ≥ M (2U(x) − c1Rm − ∆)



where M = minx ln |Nm(x)|.
Lemma 4.1: Let the sets A,B be defined as A = {x :

H̃(x) ≤ M (2U(x∗) + c1Rm + ∆)}, and B = {x :
U(x) − U(x∗) < M

M (c1Rm + ∆)}. Then B ⊃ A

Proof. ∀x ∈ B̄, we have

H̃(x) ≥ M (2U(x) − c1Rm − ∆)
> M (2U(x∗) + c1Rm + ∆)

which implies x ∈ Ā. So, B̄ ⊂ Ā, which is equivalent to
A ⊂ B. �

From the lemma, one could conclude that the minimizer
of H̃(x) lies in a ball ΩB with radius c1Rm + ∆ from the
minimizer of U(x). In section III, we have Ω0 is a subset
of local minima ΩL. With lemma 4.1, we have

Ω0 ⊂ (ΩL ∩ ΩB) (16)

If (ΩL ∩ ΩB) = {x∗}, the parallel algorithm minimizes
the original potential function U and desired configura-
tion(s) can be achieved. For many applications, goal config-
urations might not restrict to ones with minimum energy. If
all configurations contained in (ΩL ∩ΩB) are desired, then
the parallel algorithm achieves the global goals for sure.

V. SUMMARY AND CONCLUSION

In this paper, convergence properties of a synchronous
parallel simulated annealing algorithm were analyzed. The
synchronous parallel sampling algorithm significantly re-
duces the maneuvering time. However, the delay and the
communication cost introduced by the synchronization de-
grade the performance. An asynchronous parallel sampling
algorithm was proposed to solve the problem. But the
inhomogeneous nature of the underlying Markov chain at
a fixed temperature presents difficulties in the convergence
analysis. Applying the partial parallel model, a homoge-
neous Markov chain was constructed to model the evolution
of the asynchronous parallel sampling algorithm. It was
shown that the asynchronous algorithm will lead to a unique
stationary distribution for a fixed temperature.

Although extensive simulations suggest that the parallel
annealing algorithm leads swarms to the desired configu-
ration(s), in general, parallel sampling algorithm might not
achieve global goal. We studied a special example based
on a battle field scenario to investigate sufficient conditions
that guarantee optimality. By assuming that the Gibbs
potential only consists of terms associated with pairwise
and singleton cliques, an explicit equilibrium distribution
was derived to investigate the limiting configurations. It was
shown that the parallel algorithm achieves global goal if
Ω0 = (ΩL ∩ ΩB) holds.
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