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Abstract— While BGP routing datasets, consisting of
raw routing data, are freely available and easy to obtain,
extracting any useful information is tedious. Currently,
researcher and network operators implement their own
custom data processing tools and scripts. A single tool
that provides easy access to the information within large
raw BGP data-sets could be used by both communities to
avoid re-writing these tools each time. Moreover, providing
not just raw BGP messages, but some commonly used
summary statistics as well can help guide deeper custom
analyses. Based on these observations this paper describes
the first steps towards building a scalable tool. We describe
the various techniques and algorithms we have used to
build an efficient generic tool called BGP-Inspect. When
dealing with large datasets, dataset size, lookup speed, and
data processing time are the most challenging issues. We
describe our implementations of chunked compressed files
and B+ tree indices that attempt to address these issues.
We then provide an evaluation of our implementations.
Finally, we provide some example scenarios and case
studies where BGP-Inspect can provide useful insight into
the management and operation of complex BGP based
networks. An efficient and flexible back-end custom BGP
message database, coupled with an intuitive and easy to use
web-based query front-end makes BGP-Inspect a unique
and powerful tool.

I. INTRODUCTION

Route Views [1] and RIPE [2] provide some of the
most extensive routing datasets available. Each of those
archives provide raw data collected from peering sites in
Europe and North America. The Route Views archives
date back to 2001, while the RIPE archives date back
to 1999. Together, these archives comprise the most
extensive collections of data related to the operation and
performance of the BGP routing protocol on the Internet.

While these sources together provide roughly 66G of
compressed raw data, there is no easy way for the net-
work operations or research community to extract even

basic information quickly from the raw data. Obtaining
even basic information from the data requires custom
scripts or tools that extract, collect, and analyze the
data. Answering simple questions, such as how many
unique prefixes were announced by an AS over the past
month, requires the development of custom tools by
each network operator. Similarly, network researchers
attempting to conduct analysis on these datasets face
the same problems. Moreover, most of the analyses
performed on these datasets asks very similar kinds of
question.

These basic observations regarding the utility of raw
BGP routing data motivated us to implement a tool
called BGP-Inspect. BGP-Inspect provides the network
operations and research community preprocessed data in
an easy to use and consistent manner. It also provides
some basic statistics on queried data. While it does not
answer all questions that might be asked, we attempt to
build into BGP-Inspect the ability to generate statistics
for some common queries which can in turn help to
guide deeper analyses. Though BGP-Inspect is still under
development, the preliminary release attracted a large
amount of interest from the networking community. It
also provided us with valuable insight into the needs of
researchers and network operators.

While attempting to build this tool, we were faced
with several challenges. The primary challenge is build-
ing a system that can scale to handle such large raw
input datasets. Processing large amounts of information
requires that we use carefully chosen algorithms and
techniques to ensure a scalable solution. In this paper
we describe some of the techniques that helped us to
implement a scalable BGP dataset processing and query
system. We hope that other researchers can make use
of our experiences in their efforts to extract useful
information from large BGP routing datasets.

   



The rest of this paper is organized as follows. Section
II describes some related work in this field, both projects
that provide BGP routing data as well as some projects
that have run analyses on this data. Section III describes
the overall architecture of the core message processing
and query system, as well as specific techniques that
we used to enhance the scalability of our tool. We also
briefly describe the user interface that allows users to
quickly query the processed data. Section IV provides
results of our experiments used to validate some of
optimization methods that we use to build our processed
BGP messages database. Section V describes some sim-
ple case studies that illustrate how BGP-Inspect can be
used to help in BGP routing analysis and network opera-
tional tasks. Finally, Section VI presents our conclusions
and outlines some of our future work.

II. RELATED WORK

There are various public archives where researchers
can obtain BGP routing datasets. The most popular and
extensive archives are maintained by the University of
Oregon’s Route Views Project [1]. The Route Views data
archives contains data gathered from 40 BGP peers, at
various prominent locations on the Internet. Together,
these archives provide the most comprehensive collection
of BGP routing datasets.

While the Route Views datasets are composed pri-
marily of measuring points in North America, the RIPE
archives [2] are composed of messages collected from
peers in various parts of Europe. Both RIPE and Route
Views provide access to raw datasets. Additionally, RIPE
provides limited 3 month datasets via a query interface
as well. Using the query interface, researchers can obtain
raw update messages for their analysis. A similar service
is provided by the BGP Monitor project at MIT [3].
However, both of these projects simply provide access
to the raw messages. There is no attempt to provide pre-
packaged queries or summary statistics based on the raw
data that can guide network operators and researcher in
their analysis. While it is possible to use these services
to obtain raw BGP data about a particular prefix or AS,
we then need to write scripts and parsers to answer
simple questions such as “how many unique prefixes
were announced by a prefix?”, or “how many times
has the origin AS changed for a particular prefix?”.
BGP-Inspect is an attempt to provide answers to these
questions efficiently. Our goal in building BGP-Inspect
is to not only allow users to query BGP archived data,
but to provide some simple analysis and statistics on
that data as well. This can serve as a useful guide and
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Fig. 1. System Architecture

a starting point for researchers and network operators in
their own detailed analyses.

In addition to the raw dataset archives, there are
various projects that attempt to analyze BGP datasets
in order to gain insight into its operation on a large
scale, as well as attempts to detect anomalous events.
BGPlay [4] displays animated graphs of the routing
activity of a specific prefix. BGPlay animations aide
in the understanding of how various updates affect a
specific prefix. Similarly, the LinkRank Project [5] at
UCLA attempts to analyze BGP datasets in order to
visualize BGP routing changes as well to deduce the
relative importance of various AS paths. Various other
projects such as [6] [7] [8] [9] [10] [11] have also
attempted to analyze BGP performance. However, these
and other similar studies tend to focus directly on the
specific analysis they are performing and do not put any
emphasis on building generic tools. By building BGP-
Inspect, we are attempting to provide a generic tool that
can be easily used and extended by the network operator
as well as the network research community. Some of the
techniques and experiences that we have described can
also provide valuable guidance towards building other
tools in a scalable manner.

III. DATA MINING LARGE BGP ROUTING DATASETS

BGP-Inspect is composed of two parts. The first is the
core BGP message processing system that is responsible
for building a scalable database that stores BGP update
messages - BGPdb. The second part of BGP-Inspect
is the query API, the web interface, and the summary
statistics, that allows users to extract information from
the message database.

   



A. Scalable BGP Database - BGPdb

Though other projects such as [2] have been able to
use a standard database such as MySQL as the back-end
for their system, discussions with the operators of that
system, our own initial experiments, as well as anecdotal
evidence revealed that it was difficult to scale even a
simple database containing just information from BGP
messages. A generic database such as MySQL cannot be
optimized to be able to effectively handle the extremly
large amounts of raw BGP data. But we did’nt just want
to be able to simply store raw BGP messages, we wanted
to provide useful summary statistics on the data as well.
This led us to consider a custom design which we would
optimize to be specially suitable for the properties of
BGP messages. Our goal was to optimize query time
performance, and at the same time be able to scale to
handle extremly large volumes of data.

The architecture of our design is illustrated in Fig-
ure 1. The BGPdb core consists of 3 databases: the
update message database, the AS path database, and the
community database. In addition, there are per prefix
and per AS indices that reference these databases. The
indices help speed up queries of these databases.

In order to build BGPdb we needed to process large
amounts of BGP routing data. Doing this efficiently
requires us to optimize several different components of
the overall system. Some of the key design factors are
disk usage, data loading efficiency, query processing
time, and usability of the processed data.

To optimize disk usage, we eliminate redundancy in
the BGP routing data. From experience, we know that
large numbers of update messages share common fields,
therefore in BGPdb we store these fields separately
from our processed versions of the update messages.
To further minimize the disk usage, we use a chunked
compressed file to store these databases.

Data loading and processing is an important com-
ponent of the overall system. In order to process the
existing BGP dataset and convert it into our format, we
need to process each update message, store the relevant
information from it into our databases, and finally update
our indices. To make this process more efficient we use
simple caches that store recently used information. This
speeds up the process of locating the relevant entry in
the ASPATH and COMMUNITY databases.

Query processing time is a key factor of the system.
The query interface is the public interface to BGPdb;
it will be used directly only by those users performing
custom analyses. Once again, we utilize the fact that
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Fig. 2. Chunked Compressed File Structure

most queries are either prefix or AS based to build B+
tree indices that speed up queries.

Last but not the least, we need to pay particular
attention to the usability of the processed data. We need
to ensure that our processing system does not abstract
out or delete any information from the original data that
might be important.

In the following subsections we provide further details
regarding these key components of BGPdb.

1) Chunked Compressed Files: One of the first steps
towards converting a large volume of data into a more
manageable size is to eliminate redundancy. In the case
of BGP routing update messages, there is an enormous
amount of redundant data. Often, the only difference
between update messages is in the timestamps at which
the messages was transmitted. This redundancy implies
that the data is extremely compressible.

The raw data archives generally store data in a com-
pressed format, however in order to perform any analysis
we need to both uncompress the data and run queries to
extract the relevant portions. There is a trade off between
making data easily available and disk usage.

In an attempt to minimize the amount of disk space
and at the same time have the ability to extract relevant
data quickly, we have implemented chunked compressed
files. A chunked compressed file is a file that is divided
into sections called chunks. Each chunk is individually
compressed. The format of a chunked compressed file
is shown in Figure 2. Each chunk header contains infor-
mation that describes the following compressed chunk.
This allows us to quickly identify which compressed
chunk contains the relevant information. The last chunk
is maintained uncompressed to speed up data insertion.
The file header contains a reference to this last chunk.
Though chunked compressed files give us slightly worse
compression ratios than one would get by compressing
the entire file, they provide us with much needed flex-

   



ibility by allowing us to navigate and access selected
portions of the file without having to decompress parts
that are not required.

Data insertion into a chunked compressed file is a
simple operation. Data is only inserted into the last
chunk of the file. As this chunk is uncompressed the
insert operation is simple and does not require any other
modifications to other parts of the file other than the file
header. Once the last chunk reaches a preset limit of how
many records can be inserted into a chunk, that chunk
is then compressed and a new uncompressed chunk is
created for new entries.

Querying for data in a chunked compressed file is
also fairly simple. Knowing the record id which we
are trying to access, we start at the top of the chunk
file. We step through all the chunk headers and find
the chunk that contains the record id. Once the relevant
chunk is located, only this chunk is read into memory
and uncompressed. Once uncompressed, we can easily
find the record corresponding to the record id. It should
be noted that though this is the current implementation,
it is perhaps not the best way to search through this a
large file; this linear search can be a performance and
scalability bottleneck. We are looking into alternate ways
of organizing this information. One method might be to
create per-week chunked files, this will limit how large
each file can get. This method is similar to the approach
we used to limit the size of our B+ tree indices described
in the next subsection.

The choice of the chunk-size is a key parameter in
constructing an efficient chunked compressed file sys-
tem. The larger the chunk-size the better the compression
ratio would be. However, there would be a degradation
in query performance as a larger chunk would need to
be decompressed to locate a single record. In the next
section we describe some experiments and discuss how
sensitive the achieved effective compression ratios are to
the choice of this parameter. We also discuss the impact
this has on query processing.

2) B+ Tree Based Indices: Once we have reduced
the redundancy in the dataset, the next step is imple-
menting an indexing scheme to efficiently find and use
meaningful subsets of this data. In the case of BGP
update messages, finding messages originating from a
given AS or advertising a given prefix are both examples
of meaningful subsets. We utilize the fact that common
queries are mostly prefix based or AS based to build
our indices. In addition, we realize that most queries
will have a time component. After some preliminary
experiments with various data structures, we settled on

B+ trees as the building blocks of our indices.
A B+ tree is a popularly used indexing scheme de-

signed to allow quick insertion and retrieval of key/value
pairs [12]. More importantly, B+ trees are specially
useful for on-disk access and are used in many file
systems. They have been extensively studied and are
useful for quick lookups. A B+ tree is similar in structure
to a B tree except that it contains a secondary index. This
second index allows linear traversal of leaf nodes, which
is suitable for range queries.

Our implementation of the B+ tree uses the date field
of the BGP update message as the key. The value stored
along with the key is a record id number. This record id
references the actual update message which is stored in
the chunked compressed file described in the previous
section.

Based on our expected common case queries, we build
two separate sets of B+ tree indices. One for prefix based
queries and the other for AS based queries. A separate
index is generated for each unique prefix, as well as for
each AS. As new update files are loaded, each update
message is processed in turn. The B+ tree corresponding
to each prefix referenced in a particular update message
is updated to reflect the new entry. Similarly, the origin
AS is computed for announce messages, and the B+ tree
index for that AS is also updated.

A simple prefix or AS based query would specify a
time range for which update messages were required.
Based on the query prefix or AS, the appropriate B+
tree index is accessed, and the relevant record ids are
obtained by querying the index using time as the key.
These records are then read from the corresponding
chunked compressed files.

3) Input Data Processing and Caching: Due to the
large volumes of data that we need to process, the data
processing that we perform on the raw input data must
be optimized.

Input processing consists of reading each update mes-
sage from the raw BGP update message files. A lookup
is performed to determine which peer originated that
message. This lookup determines which database we
will use to store the final processed message. We have
3 separate hash tables to cache frequently used values
for each of the 3 databases: update record, ASPATH,
and COMMUNITY. From the input message we extract
the ASPATH and COMMUNITY attributes. A lookup
is performed into the the 2 hash tables that store these
values to determine whether this entry has recently been
used. If it has, the hash tables provides the record ids
of the matching entries in the databases. Once we have

   



Fig. 3. BGP-Inspect Query Interface

these ids a third hash table lookup is performed on the
entire update record, which includes these record ids.
This lookup determines if the update record exists in the
update record database or if it needs to be added. This
lookup returns a single record id which identifies our
re-constituted update record.

Once we have either inserted the update message into
the database, or determined which record id indicates the
entry in the database where it is stored, we then proceed
to update our B+ tree indices. From each raw input
update message we extract the affected prefix, the origin
AS, and the time of the announcement. These values,
together with the record id obtained from the database
insert, are used to update the B+ tree. The prefix/origin
AS indicates which B+ tree we should use, the time
field is used as the key, and the record id is used as
the value that is associated with that key. In section IV
we discusses some experimental results that indicate the
effectiveness of our caching scheme.

B. BGP Database Query Processing and Statistics

The overall design of BGP-Inspect has been motivated
by the need to make queries efficient. The BGP-Inspect
user interface presents users with the option of running
2 different types of queries. The first type of query is
called a global query, the second type of query is called
a raw data analysis query. A global query is a query that
summaries data across a wide range of data, whereas a
raw data query is a query that seeks detailed information
about specific AS numbers of prefixes. The basic query
web front-end is shown in Figure 3. The top portion of
the page displays the interface for global queries, while
the bottom half is for raw data queries.

Fig. 4. Query Results for Most Active AS Numbers Query

1) Global Summary Queries: BGP-Inspect currently
provides a basic set of five global queries which can be
run over a variety of time intervals. These queries present
a data summary distilled out of large amounts of data.
The currently supported queries are:

• Most active AS numbers
• Most active prefixes
• Prefixes most announced
• Prefixes most withdrawn
• Prefixes with the most number of origin AS changes

A global query is composed by selecting a routeviews
peer, a query type, and a duration. For example a valid
query might be: ”as seen by Level 3, what were the most
active AS numbers over the last 3 days”. This query
will result in a reply containing a table that lists the
top twenty most active AS numbers as observed on the
routeviews peering session with Level 3. Figure 4 shows
an example of the result of this query. The table in the
figure shows the top twenty most active AS numbers
terms of the number of update messages generated by
them. The table lists the AS number, the AS name, as
well as the total number of announce messages from that
AS. A similar results page is generated for the other four
types of queries as well. As the other queries are all
essentially prefix based queries the resulting table lists,
the top twenty prefixes in each category, the total number
of announce messages for that prefix, the number of
withdraw messages, as well as the total number of times
the origin AS of that prefix changed.

Global summary queries require us to collect statistics
from a very large number of entries in the database.
For example, a simple query of the most active AS
over the last seven days would require us to access

   



Fig. 5. Query Results Page for Specific AS Number Query

database files for each AS number over all seven days
for each routeviews peer. However, the static nature of
these queries helps us address this difficult problem.
These query results remain the same across all users.
They are presenting a global overview of BGP activity.
Based on this observation we can pre-compute the results
for these queries each time the database is updated with
new data and save the results in a separate file for quick
lookups at query time. The current version of BGP-
Inspect available at http://bgpinspect.merit.edu updates
the BGP message database once per day. These statistics
are updated automatically right after the database update
completes.

2) Raw Data Analysis Queries: Raw data analysis
queries can be of three different types:

• AS number
• Prefix
• Prefix more specific

These queries are composed in the bottom half of the
web based query interface. Users select a routeviews
peer, the query type, enter the query value in the text
field, and finally select the start and end times for which
this query should be run. For example a valid query
might be: ”as seen by Level 3, what were the update
message announcements originated by AS 237 between
July 25th and August 1st 2005”. This query will result in
a reply that lists all of the update messages stored in the
message database. In addition a summary statistic table is
shown at the top that summarizes some basic properties
of the reply dataset. A simple graph at the top of the
page presents some basic per day activity information
about AS 237. An example of the resulting page from
this query is shown in Figure 5. The figure shows that AS

237 announced a total of 45 unique prefixes in a total of
137 update messages during the query duration. Some
of the other dynamically computed summary statistics
include, total number of update messages in query reply,
number of unique prefixes and AS numbers, complete list
of unique prefixes and AS numbers, minimum/maximum
ASPATH length, and the query run time.

Raw data analysis queries are fundamentally differ-
ent from global queries. Raw data queries dynamically
access the BGP messages database in order to extract
the relevant update messages. This is where our use of
B+ trees enables us to rapidly run queries that would
result in large response set. AS queries are generally
simpler, we simply use the AS number provided by the
user to determine directly which AS B+ tree we should
query. Prefix queries can be more complex, for example
users can ask for not only a specific prefix, but also any
prefixes that are more specific than the one they query
for.

In order to quickly locate both the B+ tree associated
with a particular prefix along with those more specific
prefixes, we use a binary index file naming scheme.
Using our scheme, each per-prefix B+ tree file is named
with the binary equivalent of that prefix. With this
convention in place locating a particular prefix is fairly
straight forward; we convert the query prefix into binary
and use that as the B+ tree filename. For a query that
was attempting to look for more specific prefixes, we can
use the binary filenames to determine which prefixes are
more specific than the query prefix.

Most queries have an associated time range compo-
nent. We use B+ tree lookups to quickly determine the
start and end record matches. In order to extract the com-
plete set of all the records in this range, we simply follow
the links between the records from the start time until
we reach the end time. The following section presents
experimental results that illustrate the performance of our
B+ tree query processing implementation.

IV. EXPERIMENTS AND ANALYSIS

In this section, we describe some experiments and
measurements that we have conducted in order to eval-
uate the performance of our implementation of the BGP
update message database. We used Route Views BGP
data sets [1] for the month of January, 2005. Different
portions of this month long dataset were used as neces-
sary to evaluate different parts of BGPdb.

The Route Views datasets contain BGP information
collected from 40 different peers. For our evaluation we
focused on information from the following 5 major peers.

   



• 12.0.1.63 - ATT
• 4.68.0.243 - Level3
• 66.185.128.1 - AOL
• 144.228.241.81 - Sprint (Stockton)
• 208.51.134.253 - Global Crossing
Table I shows the number of messages processed for

all 5 peers, for each week in our dataset. In all, the
4 week dataset contains 10.01 Million update messages
from the 5 peers listed above. It is important to keep
these per week message counts in mind as we examine
the performance of BGPdb. For example, week 4 has
more than double the number of messages compared to
week 1 which needs to be factored into our analysis of
the results.

Week Messages Cumulative Message Count
1 1.74M 1.74M
2 2.44M 4.18M
3 2.15M 6.33M
4 3.68M 10.01M

TABLE I

THE INPUT DATA SET

A. Evaluation of Chunked Compressed File Mechanism

Our first set of experiments attempted to examine
the chunk-size parameter associated with our chunked
compressed file implementation. The chunk-size param-
eter controls the number of records contained in each
compressed chunk. The larger the chunk-size, the better
the compression ratio will be, however, the larger chunk
size will also result in a much larger uncompressed
last-chunk. We ran experiments using the first 2 weeks
of January 2005 as the input dataset. For each run
we use a different chunk-size. For each experiment the
compression ratio achieved is recorded. Figure 6 shows
a graph of these recorded compression ratios. The graph
shows how the filesize grows as a function of the number
of messages processed. As expected, the two largest
chunk sizes show the greatest compression ratios, and
the results for a chunk-size of 2048 and 4096 records
per chunk are very similar. Therefore, it seems a chunk-
size of 2048 is adequate for our input data.

B. Evaluating B+ Tree Indices

The goal of the B+ tree indices is to quickly return a
set of records queried by prefix or AS while minimizing
the amount of extra storage space used. Once again,
the conflicting goals of small storage space and fast
lookups drive the parameter selection. Our second set
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of experiments attempted to evaluate the sensitivity of
index sizes and query speeds for 5 different values of
block sizes. For this set of experiments we used the first
2 weeks of January 2005 as the input dataset.

For each block size, we load the 2 week input dataset
and generate the B+ tree indices. After the load has been
completed, the overall size of the database and the time
to query the entire range of the database is recorded.
For our experiments, we ran queries for the 5 largest AS
indices over the entire 2 week dataset resulting in a total
of 130K returned entries. The total time to return these
entries was also recorded. Since the time to query the
entire database is the worst case query, it represents a
good benchmark to determine the speed of the B+ tree.
The size of the database is measured to determine which
block size minimizes disk use.

Block Size Total Query Time Database Size
512 0.241593 s 6,114M

1024 0.174691 s 6,092M
2048 0.147330 s 6,070M
3072 0.142825 s 11,802M
4096 0.133109 s 11,800M

TABLE II

B+ TREE QUERY PERFORMANCE

Table II summarizes the results of our experiments. As
the block size increases the time to query the resulting
indices also decreases. Using a larger block size results
in more shallow B+ trees resulting in faster query times.
However the size of the resulting dataset first decreases
then increases as the block size increases. For smaller
values of block size increasing the block size results in
fewer nodes being created, resulting in savings in terms
of size. For larger values of block size, increasing the
block size only results in more empty slots in the tree.
Based on the above data, the choice of 2048 as the block

   



size seems to be appropriate for our input dataset as it
provides the best compromise between database size and
query time.

C. Impact of Caching

Caching plays an extremely important role in enhanc-
ing the performance and scalability of BGPdb. This is
because of the large similarities that exist between raw
update messages inside the BGP datasets. BGPdb uses
caching to speedup both record insertion as well as
queries

Our initial caching scheme was a simple one level
scheme where we would cache the entire BGP udpate
message. This method required very large caches to
achieve even small hit rates. To fix this shortcoming,
the messages were broken into 3 parts and each part
was cached on its own. We then ran experiments to
evaluate and measure the effectiveness of our caching
scheme using a dataset composed of the first two weeks
of January 2005. The results of are shown in Table III.

In addition to the speed up in data insertion and
queries, a cache also helps us to decrease disk usage.
As we cache entries that we have inserted, future entries
simply refer to the earlier entry. The impact shown in
Table III upon storage costs is significant. In addition,
Table III describes our cache hit ratios. The cache that
stores COMMUNITY information from the raw BGP
update messages has a 99% hit rate. The resulting file
size was only 100K instead of the expected 126M. This
clearly indicates the importance of using a cache.

Type Hit Bytes Database Compression
Ratio Saved Size Rate

Update %42.14 210M 93M %75.82
AS Path %69.24 139M 15.2M %75.85

Community %99.23 126M 100K %93.37

TABLE III

SUMMARY OF CACHING IMPACT

D. Scalability

While attempting to characterize the scalability of
BGPdb, we attempted to determine if there was a
slowdown in our message processing rate over time.
Figure 8 shows the performance of BGPdb over a 1
month long input dataset. This dataset required roughly
24 hours to process and convert into our modified
format. The graphs in the middle of Figure 8 shows
the time taken to process blocks of 10,000 BGP udpate
messages from the raw BGP dataset over time. Initially
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we were concerned by the large spikes in the graph,
however detailed examination revealed that these spike
were perfectly correlated with spikes in the number of
database and index insertions. This implies that these
spikes are actually a result of increased processing load
on BGPdb by those particular update messages. This
probably indicates BGP messages where a single mes-
sage announced or withdrew a large number of prefixes.
Based on Figure 8 BGPdb seems to be performing fairly
well though it does not appear to be completely scalable
yet. We are still investigating particular enhancements
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Fig. 10. Database Insertions over time

to the current system, as described in Section III.A.1 on
chunked compressed files, which we believe will further
improve performance.

The B+ tree based indices in BGPdb appear to
scale extremely well. Figure 7 shows the rate at which
messages were inserted into the B+ tree indices as a
function of the total number of messages processed. The
performance seems to be fairly steady implying stability
in the performance over time.

E. External Factors

Building a scalable BGP dataset processing system
is a difficult task. Aside from the need to use efficient
techniques and algorithms we also need to be aware
of and work around several external factors that can
have an impact on the performance of our system. Since
the processes are likely to be I/O bound, some of the
key factors beyond the design that impact scalability are
filesystem choice (ReiserFS, ext3, or HFS+), and disk
speed. We ran several experiments to shed some light
on these factors.

Figure 9 shows a comparison of the performance of
BGPdb when different filesystems are used. We experi-
mented with ReiserFS, HFS+, and ext3. It is interesting

Fig. 11. Raw Data Query for AS9121

to note that the performance of ReiserFS and HFS+ is
similar, which ext3 performs considerably worse.

The BGPdb message processing system uses a large
number of index files. This brings to light some in-
teresting tradeoffs which influence our system design.
Initially, we based our design on maintaining single per-
prefix and per-AS indices, however, as these files get
large performance degrades. Next, we moved to using
per-week index files for these indices. However, this
now results in the creation of a large number of inodes.
Interestingly, ReiserFS filesystem performance seems to
deteriorate as a large number of files are created within
a single directory. The next step was to create these
per-week indices in separate directories, which resulted
in a much more scalable system. Figure 10 shows the
performance of BGPdb in terms of insertions/sec as a
function of the number of messages. Weekly, boundaries
can be clearly seen in the graph. Each time we start using
a new directory performance improves and drops as the
number of files in that directory increase.

V. CASE STUDIES

In this section we illustrate with the help of specific
examples how BGP-Inspect can be used to help identify
anomalous routing events, as well as for forensic anal-
ysis. We use two examples, the AS9121 route leakage
incident from December 24th 2004, and a prefix hijack-
ing event on February 10th 2005.

   



Fig. 12. Raw Data Query Prefix 35.0.0.0/8

A. Route Leakage – AS9121 Incident

The AS9121 route leakage incident is one of the most
recent examples of widespread BGP instability caused
by a single mis-configured BGP session. At roughly
9:20 UTC on December 24th, 2004, AS9121 began re-
originating a large number of globally routed prefixes.
We loaded data obtained from routeviews for this time
period (Dec 22th and December 25th) into BGP-Inspect
and attempted to determine how BGP-Inspect might have
provided valuable information about this event.

One of the earliest signs of trouble emerges when we
examine the global summary query results for ”Most
Active AS Numbers” for the last two days. AS9121
shows up on this list at number 11. This is the first
indication of potential problem. Next running a raw
data query for routeviews peer, AT&T, for AS number
9121, over the time period December 23rd 2004 to
December 25th 2004, we see that AS9121 is originating
5628 unique prefixes in a total of over 20K update
messages. Figure 11 shows the query result page. This
by itself does not indicate anomalous behavior, we need
to know what the behavior of this AS is like on other
days. Therefore, next we repeat the query for the time
range December 22nd 2004 to December 24th 2004.
This shows, AS9121 only originating 17 unique prefixes
with only about 50-150 update messages per day. This
clearly establishes that AS9121 is exhibiting anomalous
behavior on December 24th.

The next step for a network operator might be to
determine impact on their own networks. Returning to

the main query page and running a raw data query
on their specific prefix would return this information.
Figure 12 shows an example where we ran a query for
the prefix 35.0.0.0/8 for the time period December 24th
2004 to December 25th 2004. The top portion of the
figure displays a summary graph that shows that there
were two BGP announce messages for this prefix on
December 24th. The bottom portion of the figure shows
a table containing summary statistics for our query which
clearly lists that this prefix was announced by 2 unique
origin AS numbers. It also lists this prefix as being
originated by AS 9121 and AS 237 over the query period.
This shows us that this prefix was indeed affected by
this incident, atleast as seen by AT&T. Repeating this
query for other routeviews peers shows that only AOL
and Sprint report this prefix as having been originated by
2 origin AS numbers. Level 3 and Global Crossing only
see this prefix originated by AS 237 which is correct
origination for this prefix. This example demonstrates
that by running a sequence of queries using BGP-Inspect
a network operator is easily able to obtain information
about routing anomalies, whether they are impacted by it
and some estimates about how widespread the anomaly
is. This combination of functionality and ease of use is
not available via any of the existing BGP tools.

Using BGP-Inspect it is possible to easily perform
even more detailed analysis of this event. For example,
by repeating our raw data query for AS 9121 for the
time range December 24th to December 25th for various
routeviews peers, and checking to see the number of
unique prefixes originated by this AS number, we can
see that some networks, were affected to a much smaller
degree than others. The Sprint routeviews peer informa-
tion for example shows AS 9121 as having originated
8K unique prefixes, Global Crossing shows 7.5K, AOL
12K, and Level 3 only 3.7K unique prefixes. We can
perform even more detailed analysis of the event by
modifying the query time interval. By changing our
query time interval to query data for 1 hour intervals, we
see that there appear to have been two separate incidents
not just one. The first incident occurred between the
hours of 9-10 UTC and the second incident between
the hours of 19-20. Table IV lists the number of unique
prefixes announced by AS9121 as seen by the SPRINT
routeviews peer.

It should be noted that not only does BGP-Inspect
list the summary statistics we have cited in the previous
analysis, but it lists the complete update messages as well
including time of announcement, the set of prefixes in the
update message, the ASPATH, and the COMMUNITY.

   



This provides valuable information that can help identify
potential sources of routing anomalies. Providing net-
work operators with this powerful capability in an easy
to use form can help enhance the security and robustness
of the Internet.

B. Prefix Hijacking

Our second example is based on an accidental route
hijacking incident that occurred on February 10th, 2005.
A class C prefix 207.75.135.0/24 was announced into
BGP by AS 2586. This prefix is actually part of the
larger 207.72.0.0/14 under the control of AS 237. Once
again, we try to show how BGP-Inspect can help in
the analysis of such events. The query type most useful
for this type of an event is a raw data analysis query
of type ”prefix more specific”. This queries the BGP
message database for all prefixes more specific than the
one specified. In this case the query is for the prefix
207.72.0.0/14. The resulting response page is shown in
Figure 13. The summary statistic table at the top of the
page clearly lists, that there were 2 prefixes that matched
this query. It lists both the /14 as well as the more specific
/24 prefix. It also shows that there were two unique AS
numbers 237 and 2586 originating these prefixes which
is an indication of a potential prefix hijack event. Next in
order to determine the scope of this event, we repeat our
query on the different routeviews peers. We see that this
prefix hijack was indeed visible in all those networks.

Closer examination of the update messages listed in
the BGP message table, we are easily able to identify the
specific update message that caused the prefix hijack.

Time (UTC) Number of Unique Prefixes
07-08 0
08-09 0
09-10 4604
10-11 56
11-12 804
12-13 56
13-14 196
14-15 159
15-16 34
16-17 92
17-18 54
18-19 172
19-20 4496
20-21 229
21-22 15
22-23 0

TABLE IV

NUMBER OF UNIQUE PREFIXES ORIGINATED PER HOUR BY

AS9121 ON DECEMBER 24TH 2004

Fig. 13. Raw Data Query for Prefix 207.72.0.0/14 and More Specific
Prefixes

In this case there was an update message at 11:48:28
which mistakenly announced the /24 prefix. Querying
BGP-Inspect for AS 2586 for Feb 7th 2005 to Feb
13th 2005, shows who the originator is. It also reveals
that on Feb 20th 2005, they originated 80 BGP update
messages, whereas they usually only originate less than
10 messages per day. This seems to indicate a possible
router reconfiguration. Also listed is the withdraw mes-
sage at 19:22:14 which reverted the mis-configuration.
This example shows how network operators can benefit
by having a globally accessible repository of easy to
query BGP update messages.

C. Common Network Management Tasks

Common network management tasks are easily ac-
complished with BGP-Inspect. Properties such as con-
nectivity, historical origin AS, and average BGP UP-
DATE frequency are quickly determined. Each of these
properties are determined by setting 2 dialog boxes, en-
tering a single value, and clicking a button. For example,
how each of the loaded peers get to a specific prefix
involves selecting all interested peers, selecting the query
type (Prefix-Exact), entering the prefix, selecting the date
range, and, finally, submitting the query. The response
will show an aggregate view, showing the frequency of
update messages recieved at each peer (for the given

   



prefix), and tabs for each peer, giving a full account of
update messages recieved. The other properties are either
infered from this response or completed in a similar
way. While the type of information presented for day
to day network management is not unique, the speed
and ease at which BGP-Inspect delivers the information
is optimized.

VI. CONCLUSIONS AND FUTURE WORK

There has been an increasing awareness of the need to
use data collection and analysis to study the performance
of various Internet protocols. This has resulted in the
deployment of large scale data gathering infrastructures.
However, it is difficult to extract useful information from
large raw datasets. Analyzing large datasets requires one
to use tools, techniques and algorithms that are able to
scale to handle such large input datasets.

In this paper we have described our experience in
attempting to build a scalable tool for mining large BGP
routing datasets as well as in building an effective query
mechanism for this information. In particular, the use of
chunked compressed files and B+ tree indices enables
us to balance the need for compressing the data while
allowing us to extract information quickly via scalable
queries. The use of an extremely simple and intuitive
interface to compose powerful queries is also important.
BGP-Inspect provides not only raw update messages in
response to queries, but also computes statistics which
summarize the information. We hope our experiences
will provide a valuable guide to others attempting to
build similar systems. We have described some example
scenarios where BGP-Inspect provides valuable infor-
mation about anomalous events easily. Current BGP
tools lack the ability to allow such powerful analysis
of anomalous events in such an easy to use manner.

We have released an initial version of our tool, BGP-
Inspect [13], [14] and have received valuable feed-
back from the network research and operator com-
munities regarding its features and usability. We are
incorporating this information into the next release.
BGP-Inspect is currently available via our website
http://bgpinspect.merit.edu. It is updated on a daily basis.
We are continuing to investigate the scalability of both
the BGP-Inspect back-end update message database, as
well as the query front-end. We are also working on
adding addition query capabilities and statistics which
will serve to further enhance its utility.
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