
Trust Evaluation in Ad-Hoc Networks

George Theodorakopoulos
gtheodor@isr.umd.edu

John S. Baras
baras@isr.umd.edu

Electrical and Computer Engineering Department
and the Institute for Systems Research

University of Maryland
College Park, MD 20742

ABSTRACT
An important concept in network security is trust, inter-
preted as a relation among entities that participate in vari-
ous protocols. Trust relations are based on evidence related
to the previous interactions of entities within a protocol. In
this work, we are focusing on the evaluation process of trust
evidence in Ad Hoc Networks. Because of the dynamic na-
ture of Ad Hoc Networks, trust evidence may be uncertain
and incomplete. Also, no pre-established infrastructure can
be assumed. The process is formulated as a path problem on
a directed graph, where nodes represent entities, and edges
represent trust relations. Using the theory of semirings, we
show how two nodes can establish an indirect trust relation
without previous direct interaction. The results are robust
in the presence of attackers. We give intuitive requirements
for any trust evaluation algorithm. The performance of the
scheme is evaluated on three topologies.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: General—
Security and Protection; G.2.2 [Discrete Mathematics]:
Graph Theory—Path and circuit problems

General Terms
Design, Security

Keywords
ad-hoc networks, semirings, trust evaluation, trust metric

1. INTRODUCTION
The notion of trust, in the realm of network security, will

for our purposes correspond to a set of relations among en-
tities that participate in various protocols [11]. Trust in-
fluences decisions like access control, choice of public keys,
etc. Trust relations are determined by rules that evaluate,
in a meaningful way, the evidence generated by the previous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSe’04, October 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-925-X/04/0010 ...$5.00.

behavior of an entity within a protocol. What is meaning-
ful depends on the specific protocol (application), and on
the entity that evaluates the trust relation. The application
determines the exact semantics of trust, and the entity de-
termines how the trust relation will be used in the ensuing
steps of the protocol.

For example, suppose that entity A wants to determine
the public key that entity B controls. A and B have had
no previous interactions, hence no trust relation, so A has
to contact entities that have some evidence about B’s key.
Relevant pieces of evidence in this case are certificates bind-
ing B’s key to B’s identity. Also, the trustworthiness of
the entities that issued these certificates should be taken
into account. If A has had previous interactions with these
issuing entities then their public keys as well as their trust-
worthiness will be known to A. Otherwise, the same steps
will have to be repeated to establish a trust relation with
the issuing entities, recursively. Finally, A will evaluate the
whole body of evidence and establish a trust relation with
B. In this case, the trust relation will be : ”A does (or does
not) believe that B’s key is KB”.

The specification of admissible types of evidence, the gen-
eration, distribution, discovery and evaluation of trust ev-
idence are collectively called Trust Establishment. In this
work, we are focusing on the evaluation process of trust evi-
dence in Ad-Hoc Networks, i.e. we are focusing on the trust
metric itself. In particular, we are not dealing with the col-
lecting of evidence from the network, and the accompanying
communication and signaling overhead. This issue is impor-
tant, and obviously needs to be addressed in a complete
system.

We will be using the terms ”trust evaluation”, ”trust
computation”, and ”trust inference” interchangeably. The
evaluation process is formulated as a path problem on a
weighted, directed graph. In this graph, nodes represent
users, and edges represent direct trust relations, weighted
by the amount of trust that the first user places on the sec-
ond. Each user has direct relations only towards the users
he has interacted with, so all interactions are local (in the
trust graph). The aim is to establish an indirect relation
between two users that have not previously interacted; this
is achieved by using the direct trust relations that interme-
diate nodes have with each other. Hence, we assume that
trust is transitive, but in a way that takes into account edge
weights, too.

Ad Hoc networks are envisioned to have dynamic, some-
times rapidly-changing, random, multihop topologies which
are likely composed of relatively bandwidth-constrained wire-

1

less links. The nodes themselves form the network rout-
ing infrastructure in an ad hoc fashion [6]. Based on these
characteristics, we are imposing the following two main con-
straints on our scheme:

First, there is no preestablished infrastructure. The com-
putation process cannot rely on, e.g., a Trusted Third Party.
There is no Public Key Infrastructure, Certification Author-
ities, or Registration Authorities with elevated privileges.

Second, evidence is uncertain and incomplete. Evidence
is generated by the users on the fly, without lengthy pro-
cesses. So, it is uncertain. Furthermore, in the presence of
adversaries, we cannot assume that all friendly nodes will be
reachable: the malicious users may have rendered a small or
big part of the network unreachable.

We require that the results are as accurate as possible, yet
robust in the presence of attackers. It is desirable to, for in-
stance, identify all allied nodes, but it is even more desirable
that no adversary is misidentified as good. We use a general
framework for path problems on graphs as a mathematical
basis for our proposed scheme, and also give intuitive re-
quirements that any trust evaluation algorithm should have
under that framework. We evaluate the performance of the
scheme with simulations on various trust topologies.

This work is organized in five sections. After this In-
troduction, the second section describes and comments on
related work that has been done in the field of trust com-
putation. The third section explains our approach, pro-
poses a mathematical framework for trust computation, and
describes intuitive properties that any scheme under this
framework should have. In the fourth section, our proposed
scheme is used for actual computation scenarios, and the
results are discussed. The fifth section concludes the paper
and suggests future directions for improvement.

2. RELATED WORK
Some of the following examples have been cast in the

public key certification framework, whereas others are more
general. However, they can all be viewed as trust evalua-
tion metrics, insofar as they can compute an expected va-
lidity level for a statement like ”Is this public key certificate
valid?”. In all work described below, graphs are used to
model the situation at hand. The nodes correspond to enti-
ties, and an edge (i, j) is labeled according to the parameters
of the certificate (credentials) issued by entity i for entity j.

Blaze, Feigenbaum, and Lacy [2] seem to have been the
first to introduce the term ”Trust Management”, and iden-
tify it as a separate component of security services in net-
works. They designed and implemented the PolicyMaker
trust management system, which provides a unified frame-
work for describing policies (rules), credentials (trust evi-
dence), and trust relationships. Also, this system is locally
controlled, since it does not rely on a centralized authority
to evaluate the credentials: Each user has the freedom and
the responsibility to reach his own decisions.

The main issues in [2] and related work (KeyNote [1],
SPKI/SDSI [5], Delegation Logic [18], Trust Policy Lan-
guage [12], also [27]) are: the language in which the cre-
dentials and the policies will be described; the compliance-
checking algorithm that checks if the credentials satisfy the
policy rules; and the algorithm for the discovery of the cre-
dentials in the first place.

In PGP [28], a distinction is made between the validity
of a public key and its trust level. Bob’s key is valid for

Alice, if Alice believes that it really belongs to Bob. The
trust level of Bob’s key corresponds to how carefully Bob
authenticates keys before issuing certificates for them. The
trust levels of the keys known to Alice are assigned in any
way Alice wants. PGP only determines the validity of a key
according to how many keys have signed it, and what the
trust levels of the signing keys are. For instance, a key is
valid if at least two marginally trusted keys have signed it.

Maurer’s metric [21],[16] assigns weights wij ∈ [0, 1] to
edges. These weights correspond to i’s opinion about the
trustworthiness of the certificate issued for j’s public key,
i.e. to what degree i believes that the {public key – owner
ID} binding implied by the edge i → j has been properly
certified. The weights are then treated as link survival prob-
abilities. The metric calculates the probability that at least
one path survives that leads from the entity evaluating the
metric to the entity involved in the certificate in question.

Reiter and Stubblebine [23] introduced the concept of
path independence for entity authentication. They argued
that multiple independent paths are a safer way to authenti-
cate Bob than either the reachability or the bounded reach-
ability metric. Their proposal was a Bounded Length Inde-
pendent Paths metric which returns a set of node-disjoint
paths from Alice (source) to Bob (destination) which are
shorter than K hops. Since the computation of this metric
is an NP-complete problem for K ≥ 5 they gave approxima-
tion algorithms.

In a subsequent paper [24], the same people suggested
a different metric, based on network flow techniques. The
model being the same, weights were added on the edges indi-
cating the amount of money that the issuer will pay to any-
one who is misled because of the corresponding certificate
is false. Treating the edge weights as capacities, the metric
calculates the maximum flow from Alice to Bob. This is the
minimum amount of money that Alice can expect to receive
if it turns out that she has been using the wrong key for
Bob.

Levien’s metric [17] is also network flow based. After as-
signing edge capacities the metric treats trust as a commod-
ity that flows from Alice to Bob. Alice has unit quantity of
trust and tries to send it to Bob. The metric calculates how
much of this unit quantity reaches Bob. By suitably assign-
ing capacities, the metric is made more resistant to attacks.
However, some assumptions in this work are not realistic,
e.g. that all nodes have the same indegree d.

Jøsang [14] has developed an algebra for assessing trust
relations, and he has applied it to certification chains. To
a statement like ”The key is authentic” he is assigning a
triplet (called opinion) (b, d, u) ∈ [0, 1]3 : b + d + u = 1,
where b, d, and u designate belief, disbelief, and uncertainty
respectively. Belief (disbelief) in a statement increases when
supporting (contradicting) evidence appears. Uncertainty is
caused by the lack of evidence to support either belief or
disbelief. Many operators are given for the manipulation of
these opinions.

In [3], first-hand observations are locally exchanged be-
tween neighboring nodes. Assume i receives from j evidence
about k. First of all, i adjusts his opinion for j, based on
how close j’s evidence is to i’s previous opinion about k.
If it is not closer than some threshold, the new evidence is
discarded, and i lowers his opinion about j. Otherwise, i in-
creases his trust for j and the new evidence is merged with
i’s existing opinion for k.

2

In [19], a group Q of users is selected, and they are asked
to give their opinion about a certain target node. The end
result is a weighted average of their opinions and any pre-
existing opinion that the initiator node may have. One pos-
sible selection for the group Q is the one-hop neighbors of
the initiator.

In the EigenTrust algorithm [15], nodes exchange vectors
of personal observations (called local trust values) with their
one-hop neighbors. Node i’s local trust value for node j
is denoted by cij . These trust values are normalized (∀i :
∑

j
cij = 1). Each node i calculates global trust values tij

for all other nodes j by the following iterative computation:

t
(n+1)
ij =

∑

k cikt
(n)
kj , where t

(0)
kj = ckj .

3. OUR APPROACH

3.1 System Model
We view the trust inference problem as a generalized short-

est path problem on a weighted directed graph G(V, E)
(trust graph). The vertices of the graph are the users/entities
in the network. A weighted edge from vertex i to vertex j
corresponds to the opinion that entity i, also referred to as
the issuer, has about entity j, also referred to as the target.
The weight function is w(i, j) : V × V −→ S, where S is
the opinion space. The aim is to aggregate, in a meaning-
ful way, the weights along all paths from the source to the
destination.

Each opinion consists of two numbers: the trust value,
and the confidence value. The former corresponds to the
issuer’s estimate of the target’s trustworthiness. For exam-
ple, a high trust value may mean that the target is one
of the good guys, or that the target is able to give high
quality location information, or that a digital certificate is-
sued for the target’s public key is believed to be correct.
The confidence value corresponds to the accuracy of the
trust value assignment. A high confidence value means that
the target has passed a large number of tests that the is-
suer has set, or that the issuer has interacted with the tar-
get for a long time. Since opinions with a high confidence
value are more useful in making trust decisions, the confi-
dence value is also referred to as the quality of the opin-
ion. The space of opinions can be visualized as a rectan-
gle (MIN T, MAX T)×(MIN C, MAX C) in the Cartesian
plane (Figure 1, for S = [0, 1]× [0, 1]).

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

Opinion: (t, c)

t

c

Figure 1: Opinion space

Both the trust and the confidence values are assigned by
the issuer, in accordance with his own criteria. This means

that a node that tends to sign public key certificates without
too much consideration will often give high trust and high
confidence values. The opposite holds true for a strict en-
tity. When two such entities interact, it is important for the
stricter entity to assign a low enough trust value to the less
strict one, indicating the perceived ”sloppiness”. Otherwise,
the less strict entity may lead the stricter one to undesirable
trust decisions. This situation is easier to picture in the con-
text of Certification Authorities and public key certification.
There, a CA A will only give a high trust value to B, if B’s
policy for issuing certificates is at least as strict as A’s and
has the same durability characteristics [11].

Also, it is assumed that nodes assign their opinions based
on local observations. For example, each node may be equipped
with a mechanism that monitors neighbors for evidence of
malicious behavior, as in [20]. Alternatively, two users may
come in close contact and visually identify each other, or
exchange public keys, as suggested in [4]. In any case, the
input to the system is local: however, extant pieces of ev-
idence based on, e.g., previous interactions with no longer
neighboring nodes can also be taken into account for the
final decision. This would come into play when two nodes
that have met in the past need now to make a trust deci-
sion for each other. Of course, the confidence value for such
evidence would diminish over time. One consequence of the
locality of evidence gathering is that the trust graph initially
overlaps with the physical topology graph: The nodes are
obviously the same, and the edges are also the same if the
trust weights are not taken into account. As nodes move,
opinions for old neighbors are preserved, so the trust graph
will have more edges than the topology graph. However, as
time goes by, these old opinions fade away, and so do the
corresponding edges.

In the framework described, two versions of the trust in-
ference problem can be formalized. The first is finding the
trust-confidence value that a source node A should assign
to a destination node B, based on the intermediate nodes’
trust-confidence values. Viewed as a generalized shortest
path problem, it amounts to finding the generalized distance
between nodes A and B. The second version is finding the
most trusted path between nodes A and B. That is, find
a sequence of nodes 〈v0 = A, v1, . . . , vk = B〉 : (vi, vi+1) ∈
E, 0 ≤ i ≤ k − 1 that has the highest aggregate trust value
among all trust paths starting at A and ending at B. A high
level view of the system is shown in Figure 2.

Both problems are important: finding a target’s trust
value is needed before deciding whether to grant him ac-
cess to one’s files, or whether to disclose sensitive infor-
mation, or what kind of orders he is allowed to give (in
a military scenario, for instance). In this case, we will usu-
ally utilize multiple trust paths to find the trust distance
from the source to the destination, since that will increase
the evidence on which the source bases its final estimate.
Consequently, there may not be a single ”best” path cho-
sen to reach this estimate.The second problem is more rele-
vant when it comes to actually communicating with a target
node. The target node being trustworthy is one thing, but
finding a trusted path of nodes is needed, so that traffic can
be routed through them. In this case, we are interested in
finding only one path. This will, in a sense, be the ”best”
path available.

The core of our approach is the two operators that are
used to combine opinions: One operator (denoted ⊗) com-

3

Figure 2: System operation

bines opinions along a path, i.e. A’s opinion for B is com-
bined with B’s opinion for C into one indirect opinion that
A should have for C, based on B’s recommendation. The
other operator (denoted ⊕) combines opinions across paths,
i.e. A’s indirect opinion for X through path p1 is combined
with A’s indirect opinion for X through path p2 into one ag-
gregate opinion that reconciles both. Then, these operators
can be used in a general framework for solving path prob-
lems in graphs, provided they satisfy certain mathematical
properties, i.e. form an algebraic structure called a semiring.
More background on this general framework is in section 3.2.
The operators are discussed in greater depth in section 3.3.

3.2 Semirings
For a more complete survey of the issues briefly exposed

here, see [25].

3.2.1 Definitions
A semiring is a triplet (S,⊕,⊗), where S is a set, and ⊕,⊗

are binary operators with the following properties (a, b, c ∈
S):

• ⊕ is commutative, associative, with a neutral element
0© ∈ S

• ⊗ is associative, with a neutral element 1© ∈ S, and
0© as an absorbing element

• ⊗ distributes over ⊕

For example, the set of real numbers, along with the usual
addition and multiplication, forms a semiring. The neutral
elements obviously are 0© ≡ 0, and 1© ≡ 1.

A semiring (S,⊕,⊗) with a partial order relation � that is
monotone with respect to both operators is called an ordered
semiring (S,⊕,⊗,�):

a � b and a′ � b′ =⇒ a⊕ a′ � b⊕ b′ and a⊗ a′ � b⊗ b′

A semiring is called idempotent when the following holds:

∀a ∈ S : a⊕ a = a

3.2.2 Semirings for path problems
In the context of the generalized shortest path problem

in a weighted graph, ⊗ is the operator used to calculate the
weight of a path based on the weights of the path’s edges:

p = (v0, v1, . . . , vk),

w(p) = w(v0, v1)⊗w(v1, v2)⊗ · · · ⊗w(vk−1, vk)

The ⊕ operator is used to compute the shortest path weight
dij as a function of all paths from the source i to the desti-
nation j:

dij =
⊕

p is a path
from i to j

w(p)

In the familiar context of edge weights being transmission
delays, the semiring used is (<+ ∪ {∞}, min, +), i.e. ⊕ is
min, and ⊗ is +: The total delay of a path is equal to
the sum of all constituent edge delays, whereas the shortest
path is the one with minimum delay among all paths. Also,
0© is ∞, and 1© is 0. On the other hand, if edge weights
are link capacities, then the maximum bottleneck capacity
path is found by the semiring (<+ ∪ {∞}, max, min), with
0© ≡ 0, 1© ≡ ∞. The transitive closure of a graph uses the
Boolean semiring: ({0, 1},∨,∧), where all edge weights are
equal to 1. This answers the problem of path existence.

Note that the⊕ operator may pick a single path weight (as
is the case with max and min) or it may explicitly combine
information from all paths (e.g., addition, averaging).

3.3 Trust Semiring

3.3.1 Intuitive Requirements
Based on intuitive concepts about trust establishment, we

can expect the binary operators to have certain properties
in addition to those required by the semiring structure.

Since an opinion should deteriorate along a path, we re-
quire the following for the ⊗ operator (a, b ∈ S):

a⊗ b � a, b

where � is the difference relation defined in Section 3.2.
Note that the total opinion along a path is ”limited” by the
source’s opinion for the first node in the path.

The element 0© (neutral element for ⊕, absorbing for ⊗)
is the set of opinions (t, MIN C), for any t ∈ [0, 1], which, in
essence, corresponds to non-existent trust relations between
nodes. The motivation is that if a 0© is encountered along
a path, then the whole path ”through” this opinion should
have zero confidence. Also, such opinions should be ignored
in ⊕-sums.

The element 1© (neutral element for ⊗) is the ”best” opin-
ion that can be assigned to a node: (MAX T, MAX C). This
can be seen as the opinion of a node about itself. Also, it is
the desirable point of convergence of the opinions of all good
nodes about all other good nodes in the classification exam-
ple. If encountered along a path, 1© effectively contracts the
corresponding edge and identifies the nodes at its endpoints
for the purposes of the aggregation.

Regarding aggregation across paths with the ⊕ operator,
we generally expect that opinion quality will improve, since
we have multiple opinions. If the opinions disagree, the more
confident one will weigh heavier. If we insist in picking ex-
actly one opinion, we come up against a problem in the, ad-
mittedly rare, case when the opinions have equal confidence

4

values, but different trust values. In that case we have to
make a conscious design decision to choose the higher trust
value (optimistic) or the lower trust value (pessimistic). In
a fashion similar to the ⊗ operator, we require that the ⊕
operator satisfies (a, b ∈ S):

a⊕ b � a, b

3.3.2 Path semiring
In this semiring, the opinion space is S = [0, 1]× [0, 1] Our

choice for the ⊗ and ⊕ operators is as follows (Figure 3):

(tik, cik)⊗ (tkj , ckj) = (tiktkj , cikckj) (1)

(tp1

ij , cp1

ij)⊕ (tp2

ij , cp2

ij) =

(tp1

ij , cp1

ij) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij) if cp1

ij < cp2

ij

(max(tp1

ij , tp2

ij), cp1

ij) if cp1

ij = cp2

ij

(2)

where (tp1

ij , cp1

ij) is the opinion that i has formed about j
along the path p1.

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A ⊗ B = C

A

BC

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A ⊕ B = A

A

B

Figure 3: ⊗ and ⊕ operators for the Path semiring

Since both the trust and the confidence values are in the
[0, 1] interval, they both decrease when aggregated along a
path. When opinions are aggregated across paths, the one
with the highest confidence prevails. If the two opinions
have equal confidences but different trust values, we pick
the one with the highest trust value. We could have also
picked the lowest trust value; the choice depends on the
desired semantics of the application.

This semiring essentially computes the trust distance along
the most confident trust path to the destination. An impor-
tant feature is that this distance is computed along a single
path, since the ⊕ operator picks exactly one path. Other
paths are ignored, so not all available information is being
taken into account. One of the advantages is that if the
trust value turns out to be high, then a trusted path to the
destination has also been discovered. Also, fewer messages
are exchanged for information gathering.

3.3.3 Distance semiring
Our second choice is a semiring based on the Expectation

semiring which was defined by Eisner in [9], and was ap-
plied in the field of language and speech processing. The
opinion space is S = [0,∞]× [0, 1]. Before using this semir-
ing, the pair (trust, confidence)=(t, c) is mapped to the
weight (c/t, c). The motivation for this mapping becomes
clear when we describe its effect on the results of the opera-
tors. The binary operators are then applied to this weight,
and the result is mapped back to a (trust, confidence) pair.
The whole process is displayed in Equations 3 and 4, where

arrows denote mappings, and ”equals” signs denote actual
calculations based on the semiring operators.

(tik, cik)⊗ (tkj , ckj)→

(

cik

tik

, cik

)

⊗

(

ckj

tkj

, ckj

)

=

(

cikckj

tik

+
cikckj

tkj

, cikckj

)

→

(

1
1

tik
+ 1

tkj

, cikckj

)

(3)

(

tp1

ij , cp1

ij

)

⊕
(

tp2

ij , cp2

ij

)

→

(

cp1

ij

tp1

ij

, cp1

ij

)

⊕

(

cp2

ij

tp2

ij

, cp2

ij

)

=

(

cp1

ij

tp1

ij

+
cp2

ij

tp2

ij

, cp1

ij + cp2

ij

)

→

cp1

ij + cp2

ij

c
p1

ij

t
p1

ij

+
c

p2

ij

t
p2

ij

, cp1

ij + cp2

ij

(4)

So (Figure 4), when aggregating along a path, both the
trust and the confidence decrease. The component trust
values are combined like parallel resistors. We can see here
the effect of the mapping: Two resistors in parallel offer
lower resistance than either of them in isolation. Also, a zero
trust value in either opinion will result in a zero trust value
in the resulting opinion (absorbing element), while a trust
value equal to infinity will cause the corresponding opinion
to disappear from the result (neutral element). On the other
hand, the component confidence values are between 0 and
1, and they are multiplied, so the resulting confidence value
is smaller than both.

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A ⊗ B = C

A

B
C

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A ⊕ B = C

A

B

C

Figure 4: ⊗ and ⊕ operators for the Distance semir-
ing

When aggregating across paths, the total trust value is the
weighted harmonic average of the components, with weights
proportional to their confidence values. So, the result is
something between the two component values, but closer
to the more confident one. Again we can see the effect of
the mapping: The weighted harmonic average outcome is a
direct result of the inverse mapping. Note, also, the behavior
caused by extreme (zero or infinity) trust values: A zero
trust value dominates the result (unless its corresponding
confidence is zero); a trust value equal to infinity results in
an increase in the trust value given by the other opinion.
In order for the resulting trust value to be the maximum
possible, both opinions have to assign the maximum. So, in
general, we can say that this operator is conservative. A zero
confidence value (neutral element) causes the corresponding
opinion to have no effect on the result.

5

3.3.4 Computation algorithm
The following algorithm, due to Mohri [22], computes the
⊕-sum of all path weights from a designated node s to all
other nodes in the trust graph G = (V, E).

Generic-Single-Source-Shortest-Distance(G, s)

1 for i← 1 to |V |
2 do d[i]← r[i]← 0©
3 d[s]← r[s]← 1©
4 S ← {s}
5 while S 6= ∅
6 do q ← head (S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q]← 0©

10 for each v ∈ Neighbors [q]
11 do if d[v] 6= d[v]⊕ (r′ ⊗ w[(q, v)])
12 then d[v]← d[v]⊕ (r′ ⊗ w[(q, v)])
13 r[v]← r[v]⊕ (r′ ⊗ w[(q, v)])
14 if v /∈ S
15 then Enqueue(S, v)
16 d[s]← 1©

This is an extension to Dijkstra’s algorithm [7]. S is a
queue that contains the vertices to be examined next for
their contribution to the shortest path weights. The vector
d[i], i ∈ V holds the current estimate of the shortest distance
from s to i. The vector r[i], i ∈ V holds the total weight
added to d[i] since the last time i was extracted from S.
This is needed for non-idempotent semirings, such as the
second one proposed.

Our computation algorithm is based on Mohri’s, but with
three adjustments which are needed when considering the
problem from the perspective of trust. Lines 11-13 of the
algorithm will be referred to as ”node q votes for node v”.

First of all, some nodes may be prevented from voting.
Only if a node’s trust value exceeds a predefined trust thresh-
old, is the node allowed to vote. This is motivated from
the common sense observation that only good nodes should
participate in the computation, and bad nodes should be
barred. Note that there is no restriction on the correspond-
ing confidence. Therefore, bad nodes will initially be allowed
to vote, but after some point they will be excluded since
good nodes will acquire evidence for their maliciousness.

Second, no node is allowed to vote for the source (s). Since
it is s that initiates the computation, it does not make sense
to compute s’s opinion for itself.

Third, no cyclic paths are taken into account. If that
were the case, we would be allowing a node to influence the
opinion about itself, which is undesirable. Unfortunately,
there is no clear way to discard any single edge-opinion of
the cycle. So, the approach taken is to discard any edges
that would form a cycle if accepted. As a result, the order
in which the voters are chosen in line 6 is important. We
choose the node for which the confidence is highest.

Note that these adjustments introduce characteristics from
the Path semiring into the Distance semiring. For example,
the node with the maximum confidence gets to vote first.
Moreover, some paths are pruned which means that fewer
messages are exchanged, thus saving bandwidth, but also
some of the existing information is not taken into account.
In general, this combination of the two semirings seems to
be a good tradeoff between the two.

3.4 Comparison to related work
Quantitative comparison to similar research is hard, since

there is no common framework for objective measurements.
For example, the notion of confidence is only in two of the
references (discussed below), but it occupies a central posi-
tion in our work, and we indeed consider it an advantage of
our work since it makes for a more expressive model. There
is no obvious way to transform weights across schemes. We
used these schemes to derive our intuitive trust require-
ments, and avoid pitfalls like allowing a node to single-
handedly increase other nodes’ opinion about himself.

In [3] opinions are modeled as probability distribution
functions (pdfs), so the uncertainty (inverse of confidence)
in an opinion corresponds to the variation of the pdf. How-
ever, there are many other parameters (behavior model of
Bad and Good nodes, node mobility, local vs global opinion
availability) that obstruct a meaningful comparison without
oversimplifications.

In [14] uncertainty is also modeled explicitly, and in fact
this work is the closest to ours since it is also based on an al-
gebraic framework for evaluating trust. Unfortunately, their
operators do not satisfy the distributivity property, the end
result of which is that some trust graphs cannot be analysed,
or can be analysed in more than one way with different re-
sults. Additionally, the lack of distributivity means that the
existing theory of semirings and the associated results can
no longer be used. Their supporting argument (that only in-
dependent opinions should be aggregated, see [14] for more
details) does not sound 100% intuitive. This should rather
be considered an open issue, and subject for further inves-
tigation. Another benefit of distributivity is that it allows
in-network aggregation of opinions, which is a way of sav-
ing bandwidth. It also allows incremental incorporation of
new paths, which is helpful in a distributed, asynchronous
environment. All criticism aside, this work was a big initial
inspiration for the discovery of our trust semiring frame-
work.

It transpires that a common ground for performing mean-
ingful comparisons is direly needed. Hopefully, our semiring
formalism (or something that subsumes it) will turn out to
be expressive enough to serve that purpose.

4. EVALUATION AND EXPERIMENTAL RE-
SULTS

In this section, we are describing the scenarios that were
examined in the simulations. The results obtained are dis-
cussed, and explained in terms of the parameters and prop-
erties of the algorithms.

4.1 Simulation setup
We assume that some nodes are Good, and some are Bad.

Good nodes adjust their direct opinions (opinions for their
neighbors) according to some predefined rules (explained
later in this section). Bad nodes, however, always have the
best opinion (MAX T,MAX C) for their neighboring Bad
nodes, and the worst opinion (MIN T,MAX C) for their
neighboring Good nodes. This is a rather simplistic strategy,
and we plan to make it more elaborate in future work.

We expect that the opinions of a Good node for all other
nodes would evolve as in Figure 5. That is, all Good and all
Bad nodes will be identified as Good and Bad, respectively.
When the network is ”born”, the nodes are partitioned into

6

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

Figure 5: Opinion convergence. Opinions for good
and bad nodes are denoted with a cross and a square,
respectively.

Good and Bad. We pick a Good node, which will be com-
puting indirect opinions to all other nodes. Initial direct
opinions are all set to values randomly distributed around
(0.5, 0.1), i.e. medium trust and low confidence. The trust
threshold is empirically set to 0.3: Only nodes for which
the trust value is higher than this threshold are allowed
to vote. Time is discrete and is measured in rounds. At
each round, two things happen. First, the direct opinions
of each node for his neighbors approach the correct opin-
ion, which is (MIN T,MAX C) for the bad neighbors, and
(MAX T,MAX C) for the good neighbors. Second, the des-
ignated good node calculates his indirect opinions for all
other nodes. These indirect opinions are the experimental
results shown in Section 4.2. Also, the confidence for some
indirect opinions may be too low (within ε = 0.01 of MIN T
= 0), so these nodes are not assigned any opinion. Note
that plenty of real time may pass between two successive
rounds. This real time amounts to communication delay
due to opinion exchanging between the nodes. We are ab-
stracting away this delay, as well as all the specifics of the
exchanging algorithm, and we are leaving it for future work.

The most important evaluation metric is whether the nodes
are correctly classified as good and bad. We want the opin-
ions for all bad nodes to be close to (MIN T,MAX C) and
the opinions for all good nodes close to (MAX T,MAX C).
Moreover, we want this to happen as soon as possible, i.e.
before all direct opinions converge to the correct ones, since
the users in the real network may be forced to make an early
trust decision. Furthermore, a failsafe is desirable: If trust
evidence is insufficient, we prefer not to make any decision
about a node, rather than make a wrong one.

Of course, we have to evaluate the robustness of each
of the above mentioned metrics as the proportion of bad
nodes increases. We also measure the effect of different trust
topologies. Namely, three topologies are selected: Grid,
Random, and Small World. The Grid and Random topolo-
gies can be seen as two extremes of a spectrum. On the one
hand, the Grid is completely symmetric and deterministic:
We are using a 10x10 square for 100 nodes. Each node, ex-
cept the perimeter nodes, has exactly 8 neighbors. On the
other hand, the Random topology was constructed so that
the average degree is again 8, but this symmetry is com-
pletely probabilistic. Each edge has the same probability
of existing, according to the Erdös-Rényi model [10]. The

Small World topology [26] is between these two extremes, in
the sense that there are a few nodes that have a high degree,
and all the rest have much fewer neighbors. In this case, too,
the average degree is 8. The Small World topology for trust
has also been used in [13].

4.2 Results
In this section we present some of the results obtained

through simulations. We chose to present few actual out-
put data, and more detailed conclusions. For each of the
three topologies (Grid, Random, Small World), the percent-
age of bad nodes is increased from 10% to 50% to 90%.
The example figure below (Figure 6) shows the opinions of
the source node (s) for every other node after the compu-
tations of rounds 30 and 70 in the Random topology for a
50% percentage of Bad nodes. The nodes originally des-
ignated as Good are pictured as crosses, whereas the Bad
ones as squares. The aim is, first and foremost, for the two
groups of shapes to be clearly separated. Also, the Good
nodes should be as close as possible to the upper right cor-
ner (GOOD corner, corresponding to the (MAX T,MAX C)
opinion), and the Bad nodes to the upper left corner (BAD
corner, (MIN T,MAX C) opinion).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trust

C
o
n
fi
d
en

ce

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trust

C
o
n
fi
d
en

ce

Figure 6: Rounds 30 and 70, Good nodes are crosses,
Bad nodes are squares

4.3 Discussion
We were able to observe some general trends in the re-

sults obtained. First of all, in the early rounds Good and
Bad nodes are intermixed: there is no clear separating line.
Even more, Bad nodes seem to be given better opinions than
Good nodes, which is clearly undesirable. The explanation
for this is based on two aspects of the scheme; namely, the
trust threshold and the Bad nodes’ way of assigning direct
opinions. Initially, Bad nodes are allowed to vote, since the
trust threshold (0.3) is lower than the initial default trust
value (0.5), i.e. they have not been ”discovered” yet. So,
their (MIN T,MAX C)=(0,1) opinions for Good nodes are
taken into account and the result is that Good nodes appear
to be bad. Also, Bad nodes give (MAX T,MAX C)=(1,1)
opinions to each other, hence reinforcing each other.

The situation in later rounds improves. The Good nodes
move towards the upper right corner, the Bad ones towards
the upper left. There is also a clear separating line between
the two groups of nodes. For an actual implementation a
practical guideline could be derived from the above obser-
vation, i.e. to be especially careful when making important
trust decisions in early rounds. The trust computation may
be based on too little raw evidence (direct opinions) to be
relied upon. In all cases, however, the Good and Bad nodes

7

are separated eventually (in the last rounds). This serves as
a sanity check for the algorithm.

As the percentage of Bad nodes increases, we can see
that the separation is still successful sooner or later, but
the main observation is that the number of classified nodes
is decreasing, especially for the Grid topology. Classified
nodes are those for which the evidence was sufficient, i.e. the
confidence of the source’s opinion for them was more than
ε = 0.01. The following graphs (Figure 7) show the number
of nodes classified in each topology, for different percentages
of Bad nodes, after every round of computation. The gen-
eral effect of Bad nodes on the number of classified nodes is
that, after they are discovered, they block the trust paths
they are on since they are not allowed to vote. So, nodes
that are further away from the source than these Bad nodes
can be reached by fewer paths. They may even be com-
pletely isolated. In any case, the confidence in the source’s
opinion for them is decreased, so some of them cannot be
classified.

grid

random

smallworld

0 20 40 60 80 100

0
20
40
60
80

100

Round

%
o
f
cl

a
ss

ifi
ed

n
o
d
es

grid

random

smallworld

0 20 40 60 80 100

0
20
40
60
80

100

Round

%
o
f
cl

a
ss

ifi
ed

n
o
d
es

Figure 7: Node classification, 50% 90% bad nodes

The Random topology performs best, because it is less
affected by Bad nodes. This topology has a relatively short
average path length between the source (s) and all other
nodes, so confidence values for opinions are not too low. At
the same time, it does not rely on information provided by
any single node or small set of nodes. The links are random,
so every node is reached through different paths.

The average path length is the main defect of the Grid
topology, since for certain nodes it is large. If this is coupled
with Bad nodes blocking some of the paths, the confidence
values for nodes that are away from the source is dropping
considerably. The more bad nodes, the more pronounced
this effect is. So, the Grid topology performs worst of all.

As far as the Small World topology is concerned, the path
length is short, since there are some highly connected nodes.
So, it performs better than the Grid topology. However, it is
exactly these highly connected nodes that degrade the per-
formance of the computation when they are Bad. The reason
is, again, that they block many paths and affect opinions for
most nodes. If the majority of these highly connected nodes
are Bad, few trust paths will be able to be established.

The 90% Bad node case is interesting to examine specif-
ically. First, there is a sudden drop in the number of clas-
sified nodes between rounds 30 and 40. This is so, because
at this point the opinions for Bad nodes acquire trust val-
ues that are lower than the trust threshold, so they become
ineligible to vote. This could suggest the Sybil attack [8]
as an attempt to compromise the system. By introducing
an arbitrary number of fake Bad nodes, one could arbitrar-
ily increase their percentage. This seems to allow a Bad
node to bring about the 90%(+) case at will, and therefore
only a very small number of nodes will be classified. How-
ever, things are not so simple: The invented Bad nodes do
not block any existing ”good” trust paths. They may cre-
ate additional ”bad” paths, but these will contribute to the
final result neither positively nor negatively: they will be
ignored. What really matters is the number of ”good” trust
paths, and nothing else. In our previous discussion, we have
been increasing the percentage of Bad nodes keeping the to-
tal number of nodes constant. So, we have been reducing
the number of Good nodes, and, as a result, the number of
”good” paths.

Second, and more intriguing, is that the Random topol-
ogy becomes equivalent to the Grid topology, and the Small
World topology performs better than both. The explanation
is that almost all nodes are Bad, so only nodes one or two
hops away from the source can be classified. This is true for
all topologies. But the Grid nodes have exactly 8 neighbors,
and all Random nodes have approximately 8 neighbors, too.
So, the number of classified nodes turns out to be around 20.
On the other hand, in the Small World topology the source
node is one of the highly connected nodes (19 neighbors,
when the average degree is 8). So, all of the 19 neighbors,
and some of the nodes that are two hops away are classified
for a total of about 40 nodes. A practical guideline for the
Small World topology would then be that highly connected
nodes should be protected, better prepared to withstand at-
tacks, or, in general, less vulnerable.

5. CONCLUSION AND FUTURE WORK
We have presented a scheme for evaluating trust evidence

in Ad-Hoc networks. Our scheme is entirely based on in-
formation originating at the users of the network. No cen-
tralized infrastructure is required, although the presence of
one can certainly be utilized. Also, users need not have per-
sonal, direct experience with every other user in the network
in order to compute an opinion about them. They can base
their opinion on second-hand evidence provided by interme-
diate nodes, thus benefitting from other nodes’ experiences.
Of course, we are taking into account the fact that second-
hand (or third, or fourth...) evidence is not as valuable as
direct experience. In this sense, our approach extends PGP,
since PGP only uses directly assigned trust values.

At each round of computation, the source node computes
opinions for all nodes. This means that information acquired
at a single round can be stored and subsequently used for

8

many trust decisions. If there is not enough evidence to
determine an opinion, then no opinion is formed. So, when
malicious nodes are present in the network they cannot fool
the system into accepting a malicious node as benevolent.
A failsafe state exists that ensures graceful degradation as
the number of adversaries increases.

The trust topology also has significant influence on the
performance of the algorithm. We have seen that if any node
can be malicious with the same probability, the Random
topology performs better. On the other hand, if the highly
connected nodes of the Small World topology are Good, the
algorithm fares better at the crucial cases of malicious node
preponderance.

One of the main advantages of our work is the explicit
modeling of the uncertainty in trust estimates. This allows
greater flexibility in describing intuitive situations. For ex-
ample, it is possible to distinguish between the following
opinions: ”I am 100% confident that X is 50% trustworthy”
and ”I am 50% confident that X is 50% trustworthy”. This
distinction would not have been possible, if we keep just one
trust value and increase (or decrease) it according to our ob-
servations. Two good and two bad observations would be
equivalent to two hundred good and two hundred bad ones.

The use of a formal framework (semirings) and the asso-
ciated treatment of trust evaluation (generalized path prob-
lem) is important in its own right. It allows transfer of
knowledge from well developed theoretical areas, provides
better insight into the design considerations of new trust
evaluation schemes, and potentially enables analytical proofs
of hard results or bounds.

In future work, we plan to implement more elaborate mod-
els for the attackers’ behavior, and for the measures taken
against nodes that are being assigned low trust values (i.e.,
detected to be bad). So, the attackers will be facing a trade-
off between the amount of damage they can inflict, and the
possibility of being, for instance, isolated from the rest of
the network. Suitable strategies will be developed for Good
as well as Bad nodes. Furthermore, an algorithm for gath-
ering the evidence at the requesting node will be designed,
and its communication and signaling costs evaluated. It is
also interesting to study the effects of including some trust
infrastructure, e.g. nodes for which trust would be fixed.

6. ACKNOWLEDGMENTS
This material is based on work done through collaborative

participation in the Collaborative Technology Alliance for
Communications & Networks sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement DAAD19-
01-2-0011. Also, it was supported by the U.S. Army Re-
search Office under Award No. DAAD19-01-1-0494. We
would also like to thank the anonymous reviewers for their
helpful comments. The Sybil attack discussion in Section 4.3
was motivated by one of these comments, and parts of the
intended future research were suggested by reviewers. Many
clarifications were made.

7. REFERENCES
[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.

Keromytis. The KeyNote trust management system.
RFC 2704, Sept. 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, pages 164–173,
1996.

[3] S. Buchegger and J. Y. Le Boudec. The effect of rumor
spreading in reputation systems for mobile ad-hoc
networks. In Proceedings of WiOpt ‘03: Modeling and
Optimization in Mobile, Ad Hoc and Wireless
Networks, Sophia-Antipolis, France, March 2003.

[4] S. Čapkun, J.-P. Hubaux, and L. Buttyán. Mobility
helps security in ad hoc networks. In Proceedings of
the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC 2003), Annapolis, MD,
June 2003.

[5] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer
Security, 9(4):285–322, 2001.

[6] S. Corson and J. Macker. Mobile ad hoc networking
(manet): Routing protocol performance issues and
evaluation considerations. RFC 2501, IETF, January
1999.

[7] E. W. Dijkstra. A note on two problems in connection
with graphs. Numerische Mathematik, 1:269–271,
1959.

[8] J. R. Douceur. The sybil attack. In Proceedings of the
IPTPS02 Workshop, Cambridge, MA, March 2002.

[9] J. Eisner. Parameter estimation for probabilistic
finite-state transducers. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, Philadelphia, July 2002.

[10] P. Erdös and A. Rényi. On random graphs.
Publicationes Mathematicae, 6:290–297, 1959.

[11] L. Eschenauer, V. D. Gligor, and J. Baras. On trust
establishment in mobile ad-hoc networks. In
B. Christianson, B. Crispo, J. A. Malcolm, and
M. Roe, editors, 10th International Security Protocols
Workshop, Cambridge, UK, April 2002, volume 2845
of Lecture Notes in Computer Science, pages 47–66.
Springer-Verlag, 2004.

[12] A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and
Y. Ravid. Access control meets public key
infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 2–14, Berkeley, CA, May 2000.

[13] J.-P. Hubaux, L. Buttyán, and S. Čapkun. The quest
for security in mobile ad hoc networks. In Proceedings
of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC 2001), 2001.

[14] A. Jøsang. An algebra for assessing trust in
certification chains. In Proceedings of the Network and
Distributed Systems Security (NDSS’99) Symposium,
1999.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust algorithm for reputation management
in p2p networks. In WWW2003, May 2003.

[16] R. Kohlas and U. Maurer. Confidence valuation in a
public-key infrastructure based on uncertain evidence.
In Proceedings of Public Key Cryptography 2000,
volume 1751 of Lecture Notes in Computer Science,
pages 93–112. Springer-Verlag, Jan. 2000.

9

[17] R. Levien and A. Aiken. Attack-resistant trust metrics
for public key certification. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX,
pages 229–242, Jan. 1998.

[18] N. Li, B. N. Grosof, and J. Feigenbaum. A practically
implementable and tractable delegation logic. In
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 27–42. IEEE Computer Society
Press, May 2000.

[19] S. Marti and H. Garcia-Molina. Limited reputation
sharing in p2p systems.

[20] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad-hoc networks. In
Proceedings of MOBICOM 2000, pages 255–265, 2000.

[21] U. Maurer. Modelling a public-key infrastructure. In
E. Bertino, editor, Proc. 1996 European Symposium
on Research in Computer Security (ESORICS’ 96),
volume 1146 of Lecture Notes in Computer Science,
pages 325–350. Springer-Verlag, 1996.

[22] M. Mohri. Semiring frameworks and algorithms for
shortest-distance problems. J. Autom. Lang. Comb.,
7(3):321–350, 2002.

[23] M. K. Reiter and S. G. Stubblebine. Resilient
authentication using path independence. IEEE Trans.
Comput., 47(12):1351–1362, December 1998.

[24] M. K. Reiter and S. G. Stubblebine. Authentication
metric analysis and design. ACM Trans. Inf. Syst.
Secur., 2(2):138–158, May 1999.

[25] G. Rote. Path problems in graphs. Computing
Supplementum, 7:155–189, 1990.

[26] D. Watts and S. Strogatz. Collective dynamics of
”smallworld” networks. Nature, 393, 1998.

[27] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, January
2000.

[28] P. R. Zimmermann. The Official PGP User’s Guide.
MIT Press, 1995.

10

